On the problem of optimal control in the coefficients of~an~elliptic equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 278-291.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the optimal control problem for linear elliptic equations of the second order. Control functions are included in the coefficients of the equation for the state, including the coefficients of the highest derivatives. Space management is a product of Lebesgue and Sobolev spaces. The functional purpose is the sum of the integrals over the region and part of its border. The problems of correct statement of the problem in the weak topology of the space of controls are studied. It is proved that a set of optimal control problems is not empty, it is weakly compact and every minimizing sequence of the functional goals converges weakly in the space of controls to the set of optimal controls. The examples show that the solution of the problem can be not unique and minimizing sequence for the functional purpose can not have a limit in the strong topology of space management. Differentiability of proved Frechet functional is proved and the expression for its gradient is found. A necessary condition for optimality in the form of variational inequalities.
Keywords: optimal control, correctness of the problem, optimality condition.
Mots-clés : elliptic equation
@article{VSGTU_2017_21_2_a5,
     author = {R. K. Tagiyev and R. S. Kasimova},
     title = {On the problem of optimal control in the coefficients of~an~elliptic equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {278--291},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a5/}
}
TY  - JOUR
AU  - R. K. Tagiyev
AU  - R. S. Kasimova
TI  - On the problem of optimal control in the coefficients of~an~elliptic equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 278
EP  - 291
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a5/
LA  - ru
ID  - VSGTU_2017_21_2_a5
ER  - 
%0 Journal Article
%A R. K. Tagiyev
%A R. S. Kasimova
%T On the problem of optimal control in the coefficients of~an~elliptic equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 278-291
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a5/
%G ru
%F VSGTU_2017_21_2_a5
R. K. Tagiyev; R. S. Kasimova. On the problem of optimal control in the coefficients of~an~elliptic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 278-291. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a5/

[1] Lur'e K. A., Optimal'noe upravleniia v zadachakh matematicheskoi fiziki [Optimal Control in the Problems of Mathematical Physics], Nauka, Moscow, 1975, 480 pp. (In Russian) | MR | Zbl

[2] Litvinov V. G., Optimizatsiia v ellipticheskikh granichnykh zadachakh s prilozheniiami k mekhanike [Optimization of elliptic boundary value problems with applications to mechanics], Nauka, Moscow, 1987, 368 pp. (In Russian) | MR | Zbl

[3] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982, 320 pp. | MR

[4] Lions J.-L., Optimal control of systems governed by partial differential equations, Die Grundlehren der mathematischen Wissenschaften, 170, Springer-Verlag, Berlin–Heidelberg–New York, 1971, xi+396 pp. | DOI | MR | Zbl

[5] Murat F., “Contre-exemples pour divers problèms où le contrôle intervient dans les coefficients”, Ann. Mat. Pura Appl., 112 (1977), 49–68 | MR | Zbl

[6] Tagiev R. K., Kasymova R. S., “On an optimal problem for the coefficients of an elliptic equation a quality criterion of the boundary of domain”, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 35:1 (2015), 157–163 http://trans.imm.az/volumes/35-1/35-01-23.pdf

[7] Zolezzi T., “Necessary conditions for optimal control of elliptic or parabolic problems”, SIAM J. Control, 10:4 (1972), 594–607 | DOI | MR | Zbl

[8] Madatov M. D., “Problems with control in the coefficients of elliptic equations”, Math. Notes, 34:6 (1983), 932–937 | DOI | MR | Zbl

[9] Raitums U. E., Zadachi optimal'nogo upravleniia dlia ellipticheskikh uravnenii. Matematicheskie voprosy [Problems of optimal control for elliptic equations. Mathematical questions], Zinatne, Riga, 1989, 277 pp. (In Russian) | Zbl

[10] Tagiyev R. K., “Optimal control problems for elliptic equation with controls in coefficients”, Trans. Acad. Sci. Azerb. Ser. Phys.-Tech. Math. Sci., 23:4 (2003), 251–260 | MR

[11] Casado D., Couce C., Martin G., “Optimality conditions for nonconvex multistate control problems in the coefficients”, SIAM J. Control Optim., 43:1 (2004), 216–239 | DOI | MR | Zbl

[12] Tagiev R. K., “Optimal control of the coefficients of quasilinear elliptic equation”, Autom. Remote Control, 71:9 (2010), 1757–1769 | DOI | MR | Zbl

[13] Tagiev R. K., “On optimal control by coefficients in an elliptic equation”, Differ. Equ., 47:6 (2011), 877–886 | DOI | MR | Zbl

[14] Iskenderov A. D., Tagiyev R. K., “Optimal control problem with controls in coefficients of quasilinear elliptic equation”, Eurasian J. Math. Comput. Appl., 1:2 (2013), 21–39

[15] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki [Boundary-value problems of mathematical physics], Nauka, Moscow, 1973, 408 pp. (In Russian) | MR | Zbl

[16] Samarskii A. A., Lazarov R. D., Makarov V. L., Raznostnye skhemy dlia differentsial'nykh uravnenii s obobshchennymi resheniiami [Difference schemes for partial differential equations with generalized solutions], Vyssh. shk., Moscow, 1987, 296 pp. (In Russian)

[17] Ladyzhenskaia O. A., Ural'tseva N. N., Lineinye i kvazilineinye uravneniia ellipticheskogo tipa [Linear and quasilinear equations of elliptic type], Nauka, Moscow, 1973, 736 pp. (In Russian) | MR

[18] Vasil'ev F. P., Metody resheniia ekstremal'nykh zadach. Zadachi minimizatsii v funktsional'nykh prostranstvakh, reguliarizatsiia, approksimatsiia [Methods for solving extremal problems. Minimization problems in function spaces, regularization, approximation], Nauka, Moscow, 1981, 400 pp. (In Russian) | MR | Zbl