Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2017_21_2_a3, author = {S. I. Mitrokhin}, title = {On the ``splitting'' effect for multipoint differential operators with summable potential}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {249--270}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a3/} }
TY - JOUR AU - S. I. Mitrokhin TI - On the ``splitting'' effect for multipoint differential operators with summable potential JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2017 SP - 249 EP - 270 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a3/ LA - ru ID - VSGTU_2017_21_2_a3 ER -
%0 Journal Article %A S. I. Mitrokhin %T On the ``splitting'' effect for multipoint differential operators with summable potential %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2017 %P 249-270 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a3/ %G ru %F VSGTU_2017_21_2_a3
S. I. Mitrokhin. On the ``splitting'' effect for multipoint differential operators with summable potential. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 249-270. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a3/
[1] Mitrokhin S. I., “On the “splitting” of multiplicity in principal eigenvalues of multipoint boundary value problems”, Russian Math. (Iz. VUZ), 41:3 (1997), 37–42 | MR | Zbl
[2] Vinokurov V. A., Sadovnichii V. A., “Arbitrary-order asymptotics of the eigenvalues and eigenfunctions of the Sturm–Liouville boundary value problem on an interval with integrable potential.”, Differ. Equ., 34:10 (1998), 1425–1429 | MR | Zbl
[3] Vinokurov V. A., Sadovnichii V. A., “Asymptotics of any order for the eigenvalues and eigenfunctions of the Sturm–Liouville boundary-value problem on a segment with a summable potential”, Izv. Math., 64:4 (2000), 695–754 | DOI | DOI | MR | Zbl
[4] Mitrokhin S. I., “The asymptotics of the eigenvalues of a fourth order differential operator with summable coefficients”, Moscow Univ. Math. Bull., 64:3 (2009), 102–104 | DOI | MR | Zbl
[5] Mitrokhin S. I., “On spectral properties of a differential operator with summable coefficients with a retarded argument”, Ufimsk. Mat. Zh., 3:4 (2011), 95–115 (In Russian) | MR | Zbl
[6] Il'in V. A., “Convergence of eigenfunction expansions at points of discontinuity of the coefficients of a differential operator”, Math. Notes, 22:5 (1977), 870–882 | DOI | MR | Zbl
[7] Budaev V. D., “The property of being an unconditional basis on a closed interval, for systems of eigen- and associated functions of a second-order operator with discontinuous coefficients”, Differ. Uravn., 23:6 (1987), 941–952 (In Russian) | MR | Zbl
[8] Il'in V. A., “Necessary and sufficient conditions for being a Riesz basis of root vectors of second-order discontinuous operators”, Differ. Uravn., 22:12 (1986), 2059–2071 (In Russian) | MR | Zbl
[9] Mitrokhin S. I., “On some spectral properties of second-order differential operators with a discontinuous positive weight function”, Dokl. Akad. Nauk, 356:1 (1997), 13–15 (In Russian) | MR | Zbl
[10] Gurevich A. P., Khromov A. P., “First and second order differentiation operators with weight functions of variable sign”, Math. Notes, 56:1 (1994), 653–661 | DOI | MR | Zbl
[11] Lidskii V. B., Sadovnichii V. A., “Regularized sums of zeros of a class of entire functions”, Funct. Anal. Appl., 1:2 (1967), 133–139 | DOI | MR | Zbl
[12] Mitrokhin S. I., “Spectral properties of differential operators with discontinuous coefficients”, Differ. Uravn., 28:3 (1992), 530–532 (In Russian) | MR | Zbl
[13] Lidskii V. B., Sadovnichii V. A., “Asymptotic formulas for the zeros of a class of entire functions”, Math. USSR-Sb., 4:4 (1968), 519–527 | DOI | MR | Zbl
[14] Savchuk A. M., “First-order regularised trace of the Sturm–Liouville operator with $\delta$-potential”, Russian Math. Surveys, 55:6 (2000), 1168–1169 | DOI | DOI | MR | Zbl
[15] Savchuk A. M., Shkalikov A. A., “Sturm–Liouville operators with singular potentials”, Math. Notes, 66:6 (1999), 741–753 | DOI | DOI | MR | Zbl
[16] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969, 528 pp. | MR | Zbl
[17] Naimark M. A., Lineinye differentsial'nye operatory [Linear Differential Operators], Nauka, Moscow, 1969, 528 pp. (In Russian) | MR | Zbl
[18] Bellman R., Cooke K. L., Differential-difference equations, Mathematics in Science and Engineering, 6, Academic Press, New York–London, 1963, xvi+462 pp. | MR | Zbl
[19] Sadovnichii V. A., Lyubishkin V. A., “Some new results of the theory of regularized traces of differential operators”, Differ. Uravn., 18:1 (1982), 109–116 (In Russian) | MR
[20] Sadovnichii V. A., Lyubishkin V. A., Belabbasi Yu., “On regularized sums of roots of an entire function of a certain class”, Sov. Math., Dokl., 22 (1980), 613–616 | MR | Zbl
[21] Mitrokhin S. I., “Spectral properties of a Sturm–Liouville type differential operator with a retarding argument”, Moscow Univ. Math. Bull., 68:4 (2013), 198–201 | DOI | MR | Zbl
[22] Mitrokhin S. I., “On the spectral properties of odd-order differential operators with integrable potential”, Differ. Equ., 47:12 (2011), 1833–1836 | DOI | MR | Zbl