A Construction of analog of Fredgolm theorems for one class of first order
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 236-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

The integral representations of the solution manifold for one class of the first order model integro-differential equation with logarithmic singularity in the kernel are constructed using arbitrary constants. The cases when the given integro-differential equation has unique solution are found. The analogue of Fredholm theorem is built for given integro-differential equation. The method of solving this problem can be used for the solving of higher order model and non-model integro-differential equations with singular coefficients.
Keywords: integro-differential equation, boundary singular points, manifold solution, integral representation, characteristic equation.
@article{VSGTU_2017_21_2_a2,
     author = {S. K. Zaripov},
     title = {A {Construction} of analog of {Fredgolm} theorems for one class of first order},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {236--248},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a2/}
}
TY  - JOUR
AU  - S. K. Zaripov
TI  - A Construction of analog of Fredgolm theorems for one class of first order
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 236
EP  - 248
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a2/
LA  - ru
ID  - VSGTU_2017_21_2_a2
ER  - 
%0 Journal Article
%A S. K. Zaripov
%T A Construction of analog of Fredgolm theorems for one class of first order
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 236-248
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a2/
%G ru
%F VSGTU_2017_21_2_a2
S. K. Zaripov. A Construction of analog of Fredgolm theorems for one class of first order. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 236-248. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a2/

[1] Volterra V., Theory of functionals and of integral and integro-differential equations, Dover Publ., New York, 1959, 226 pp. | Zbl

[2] Magnaradze L. G., “On a new integral equation of the theory of aircraft wings”, Soobshch. AN GruzSSR, 3:6 (1942), 503–508 (In Russian) | Zbl

[3] Vekua I. N, “On the Prandtl integro-differential equation”, Prikl. matem. mekh., 9:2 (1945), 143–150 https://archive.org/details/nasa_techdoc_19880069126 | Zbl

[4] Vainberg M. M., “Integro-differential equations”, Itogi Nauki. Ser. Mat. Anal. Teor. Ver. Regulir. 1962, VINITI, Moscow, 1964, 5–37 (In Russian) | MR | Zbl

[5] Nekrasov A. I., “On a Class of Linear Integro-Differential Equations”, Tr. Tsentr. Aerogidrodin. Inst., 1934, no. 190, 1–25 (In Russian)

[6] Durdiev D. K., “Global solvability of an inverse problem for an integro-differential equation of electrodynamics”, Differ. Equ., 44:7 (2008), 893–899 | DOI | Zbl

[7] Durdiev D. K., “On the uniqueness of kernel determination in the integro-differential equation of parabolic type”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 658–666 (In Russian) | DOI

[8] Safarov Zh. Sh., “Evaluation of the stability of some inverse problems solutions for integro-differential equations”, Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2014, no. 3, 75–82 (In Russian) | Zbl

[9] Yuldashev T. K., “Inverse problem for a nonlinear integral and differential equation of the third order”, Vestnik Samarskogo Gosudarstvennogo Universiteta. Estestvenno-Nauchnaya Seriya, 2013, no. 9/1(110), 58–66 (In Russian) | Zbl

[10] Yuldashev T. K., “On inverse problem for nonlinear integro-differential equations of the higher order”, Vestnik VGU. Seriia: Fizika. Matematika, 2014, no. 1, 153–163 (In Russian)

[11] Yuldashev T. K., “Inverse Problem for a Fredholm Third Order Partial Integro-differential Equation”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(34) (2014), 56–65 (In Russian) | DOI | Zbl

[12] Magnaradze L. G., “On a system of linear singular integra-differential equations and on the linear Riemann boundary problem”, Soobshch. AN GruzSSR, 1943, no. 5, 3–9 (In Russian) | Zbl

[13] Bobodzhanov A. A., Safonov V. F., “The method of normal forms for singularly perturbed systems of Fredholm integro-differential equations with rapidly varying kernels”, Sb. Math., 204:7 (2013), 979–1002 | DOI | DOI | MR | Zbl | Zbl

[14] Bobodzhanov A. A., Safonov V. F., ““Splashes” in Fredholm integro-differential equations with rapidly varying kernels”, Math. Notes, 85:2 (2009), 153–167 | DOI | DOI | MR | Zbl

[15] Falaleev M. V., “Integro-differential equations with Fredholm operator by the derivative of the higest order in Banach spaces and it's applications”, IIGU Ser. Matematika, 5:2 (2012), 90–102 (In Russian) | Zbl

[16] Falaleev M. V., “Singular integro-differential equations of the special type in Banach spaces and it's applications”, IIGU Ser. Matematika, 6:4 (2013), 128–137 (In Russian) | Zbl

[17] Falaleev M. V., “Degenerate integro-differential equations of convolution type in Banach spaces”, IIGU Ser. Matematika, 17 (2016), 77–85 (In Russian) | Zbl

[18] Rajabov N., Integral'nye uravneniia tipov Vol'terra s fiksirovannymi granichnymi i vnutrennimi singuliarnymi i sverkhsinguliarnymi iadrami i ikh prilozheniia [Integral equations of Volterra types with fixed boundary and internal singular and supersingular kernels and their applications], Devashtich, Dushanbe, 2007, 221 pp. (In Russian)

[19] Rajabov N., “Multidimensional Volterra-type integral equation with singular boundary domains in kernels”, Dokl. Math., 83:2 (2011), 165–168 | DOI | Zbl

[20] Rajabova L., Rajabov N., Repin O. A., “On a class of two-dimensional adjoint integral equations of Volterra type”, Differ. Equ., 47:9 (2011), 1333–1343 | DOI | Zbl

[21] Zaripov S. K., “On a class of model first-order integro-differential equations with one singular point in the kernel”, Vestnik Tadzhikskogo natsional'nogo universiteta, 2015, no. 1/3(164), 27–32 (In Russian)

[22] Zaripov S. K., “On a class of model first-order integro-differential equations with an additional singular point in the kernel”, Vestnik Tadzhikskogo natsional'nogo universiteta, 2015, no. 1/6(191), 6–13 (In Russian)