Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2017_21_2_a10, author = {V. D. Beybalaev and A. A. Aliverdiev and R. A. Magomedov and R. R. Meilanov and E. N. Akhmedov}, title = {Modeling of freezing processes by an one-dimensional thermal conductivity equation with fractional differentiation operators}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {376--387}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a10/} }
TY - JOUR AU - V. D. Beybalaev AU - A. A. Aliverdiev AU - R. A. Magomedov AU - R. R. Meilanov AU - E. N. Akhmedov TI - Modeling of freezing processes by an one-dimensional thermal conductivity equation with fractional differentiation operators JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2017 SP - 376 EP - 387 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a10/ LA - ru ID - VSGTU_2017_21_2_a10 ER -
%0 Journal Article %A V. D. Beybalaev %A A. A. Aliverdiev %A R. A. Magomedov %A R. R. Meilanov %A E. N. Akhmedov %T Modeling of freezing processes by an one-dimensional thermal conductivity equation with fractional differentiation operators %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2017 %P 376-387 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a10/ %G ru %F VSGTU_2017_21_2_a10
V. D. Beybalaev; A. A. Aliverdiev; R. A. Magomedov; R. R. Meilanov; E. N. Akhmedov. Modeling of freezing processes by an one-dimensional thermal conductivity equation with fractional differentiation operators. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 376-387. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a10/
[1] Liu Junyi, Xu Mingyu, “Some exact solutions to Stefan problems with fractional differential equations”, J. Math. Anal. Appl., 351:2 (2009), 536–542 | DOI | Zbl
[2] Meilanov R. P., Beybalaev V. D., Shakhbanova M. R., Prikladnye aspekty drobnogo ischisleniia [Applied aspects of fractional calculus], Palmarium Academic Publishing, Saarbrücken, 2012, 135 pp. (In Russian)
[3] Alkhasov A. B., Meilanov R. P., Shabanova M. R., “Heat conduction equation in fractional-order derivatives”, Journal of Engineering Physics and Thermophysics, 84:2 (2011), 332–341 | DOI
[4] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poriadka i nekotorye ikh prilozheniia [Integrals and derivatives of fractional order and some of their applications], Nauka i tekhnika, Minsk, 1987, 688 pp. (In Russian)
[5] Nakhushev A. M., Drobnoe ischislenie i ego primenenie [Fractional calculus and its applications], Fizmatlit, Moscow, 2003, 272 pp. (In Russian)
[6] Tadjeran C., Meerschaert M. M., Scheeffler H.-P., “A second-order accurate numerical approximation for the fractional diffusion equation”, Journal of Computational Physics, 213:1 (2006), 205–213 | DOI | Zbl
[7] Meerschaert M. M., Tadjeran C., “Finite difference approximations for two-sided space-fractional partial differential equations”, Applied Numerical Mathematics, 56:1 (2006), 80–90 | DOI | Zbl
[8] Lafisheva M. M., Shkhanukov-Lafishev M. Kh., “Locally one-dimensional difference schemes for the fractional order diffusion equation”, Comput. Math. Math. Phys., 48:10 (2008), 1875–1884 | DOI | MR | Zbl
[9] Alikhanov A. A., “Difference methods of boundary value problems solution for wave equation equipped with fractional time derivative”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 2(17), 13–20 (In Russian) | DOI
[10] Beybalaev V. D., “Numerical method of solution of the problem on transposition of two-sided derivative of the fractional order”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2009, no. 1(18), 267–270 (In Russian) | DOI
[11] Beybalayev V. D., “Mathematical model of heat transfer in fractal structure mediums”, Math. Models Comput. Simul., 2:1 (2010), 91–97 | DOI | MR
[12] Taukenova F. I., Shkhanukov-Lafishev M. Kh., “Difference methods for solving boundary value problems for fractional differential equations”, Comput. Math. Math. Phys., 46:10 (2006), 1785–1795 | DOI | MR
[13] Goloviznin V. M., Korotkin I. A., “Numerical methods for some one-dimensional equations with fractional derivatives”, Differ. Equ., 42:7 (2006), 967–973 | DOI | MR | Zbl
[14] Beybalaev V. D., Abdulaev I. A., Navruzova K. A., Gadgieva T. Yu., “Difference methods of solving the Cauchy problem for usual differential equation with operator of fractional differentiation”, Vestnik Dagestanskogo gosudarstvennogo universiteta. Ser. 1. Estestvennye nauki, 2014, no. 6, 53–61 (In Russian)
[15] Kuznetsov G. V., Sheremet M. A., Raznostnye metody resheniia zadach teploprovodnosti [Difference methods for solving heat conduction problems], Tomsk Politechn. Univ., Tomsk, 2007, 172 pp. (In Russian)