Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2017_21_2_a0, author = {S. A. Aldashev}, title = {Well-posedness of the {Dirichlet} and {Poincar\'e} problems for~one class of hyperbolic equations in~a~ multidimensional~domain}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {209--220}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a0/} }
TY - JOUR AU - S. A. Aldashev TI - Well-posedness of the Dirichlet and Poincar\'e problems for~one class of hyperbolic equations in~a~ multidimensional~domain JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2017 SP - 209 EP - 220 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a0/ LA - ru ID - VSGTU_2017_21_2_a0 ER -
%0 Journal Article %A S. A. Aldashev %T Well-posedness of the Dirichlet and Poincar\'e problems for~one class of hyperbolic equations in~a~ multidimensional~domain %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2017 %P 209-220 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a0/ %G ru %F VSGTU_2017_21_2_a0
S. A. Aldashev. Well-posedness of the Dirichlet and Poincar\'e problems for~one class of hyperbolic equations in~a~ multidimensional~domain. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 209-220. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a0/
[1] Hadamard J., “Sur les problèmes aux dérivés partielles et leur signification physique”, Princeton University Bulletin, 13 (1902), 49–52 | MR
[2]
[3] Nakhushev A. M., Zadachi so smeshcheniem dlia uravneniia v chastnykh proizvodnykh [Problems with shifts for partial differential equations], Nauka, Moscow, 2006, 287 pp. (In Russian)
[4] Bourgin D. G., Duffin R., “The Dirichlet problem for the vibrating string equation”, Bull. Amer. Math. Soc., 45:12, Part 1 (1939), 851–858 https://projecteuclid.org/euclid.bams/1183502251 | MR
[5] Fox D. W., Pucci C., “The Dirichlet problem for the wave equation”, Annali di Mathematica Pura ed Applicata, 46:1 (1958), 155–182 | DOI | MR | Zbl
[6] Nahushev A. M., “A uniqueness condition of the Dirichlet problem for an equation of mixed type in a cylindrical domain”, Differ. Uravn., 6:1 (1970), 190–191 (In Russian) | MR | Zbl
[7] Dunninger D. R., Zachmanoglou E. C., “The condition for uniqueness of the Diriclet problem for hyperbolic equations in cilindrical domains”, J. Math. Mech., 18:8 (1969), 763–766 http://www.jstor.org/stable/24893135 | MR | Zbl
[8] Aldashev S. A., “The well-posedness of the Dirichlet problem in the cylindric domain for the multidimensional wave equation”, Mathematical Problems in Engineering, 2010 (2010), 653215, 7 pp | DOI | MR | Zbl
[9] Aldashev S. A., “The well-posedness of the Poincaré problem in the cylindric domain for the many-dimensional wave equation”, Sovremennaia matematika i ee prilozheniia [Modern mathematics and its applications], 67 (2010), 28–32 (In Russian)
[10] Aldashev S. A., “Well-posedness of the Poincaré problem in a cylindrical domain for the higher-dimensional wave equation”, Journal of Mathematical Science, 173:2 (2011), 150–154 | DOI | MR | Zbl
[11] Aldashev S. A., “Well-posedness of the Dirichlet problem in the cylindric domain for the many-dimensional hyperbolic equations with wave operator”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 13:1 (2011), 21–29 (In Russian) | MR
[12] Aldashev S. A., “Well-posedness of the Poincaré problem in the cylindric domain for the many-dimensional hyperbolic equations with wave operator”, Vychislitel'naia i prikladnaia matematika [Computational and Applied Mathematics], 2013, no. 4(114), 68–76 (In Russian)
[13] Aldashev S. A., “Well-posedness of the Dirichlet and Poincaré problems for the wave equation in a many-dimensional domain”, Ukr. Math. J., 66:10 (2014), 1582–1588 | DOI | MR
[14] Mikhlin S. G., Mnogomernye singuliarnye integraly i integral'nye uravneniia [Higher-dimensional singular integrals and integral equations], Fizmatlit, Moscow, 1962, 254 pp. (In Russian) | MR
[15] Aldashev S. A., Kraevye zadachi dlia mnogomernykh giperbolicheskikh i smeshannykh uravnenii [Boundary value problems for many-dimensional hyperbolic and mixed equations], Gylym, Almaty, 1994, 170 pp. (In Russian)
[16] Copson E. T., “On the Riemann–Green function”, Arch. Rational Mech. Anal., 1:1 (1957), 324–348 | DOI | MR
[17] Litvinchuk G. S., Kraevye zadachi i singuliarnye integral'nye uravneniia so sdvigom [Boundary value problems and singular integral equations with shift], Nauka, Moscow, 1973, 294 pp. (In Russian) | MR
[18] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, Bateman Manuscript Project, McGraw-Hill Book Co., New York, Toronto, London, 1953, xvii+396 pp. | Zbl
[19] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsional'nogo analiza [Elements of the theory of functions and functional analysis], Nauka, Moscow, 1976, 543 pp. (In Russian) | MR
[20] Smirnov V. I., Kurs vysshei matematiki [A Course in Higher Mathematics], v. 4, part 2, Nauka, Moscow, 1981, 550 pp. (In Russian) | MR