Well-posedness of the Dirichlet and Poincar\'e problems for~one class of hyperbolic equations in~a~ multidimensional~domain
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 209-220.

Voir la notice de l'article provenant de la source Math-Net.Ru

In early works the author studied the Dirichlet and Poincaré problems for multidimensional hyperbolic equations, which shows the well-posedness of these problems in cylindrical domains, significantly dependent on the height of the considered cylindrical domain. Here a multidimensional region inside a characteristic cone is considered, in which the Dirichlet and Poincaré problems have unique solutions for one class of hyperbolic equations.
Keywords: multidimensional hyperbolic equation, Dirichlet and Poincaré problems, well-posedness, functional-integral equation.
Mots-clés : multidimensional domain
@article{VSGTU_2017_21_2_a0,
     author = {S. A. Aldashev},
     title = {Well-posedness of the {Dirichlet} and {Poincar\'e} problems for~one class of hyperbolic equations in~a~ multidimensional~domain},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {209--220},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a0/}
}
TY  - JOUR
AU  - S. A. Aldashev
TI  - Well-posedness of the Dirichlet and Poincar\'e problems for~one class of hyperbolic equations in~a~ multidimensional~domain
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 209
EP  - 220
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a0/
LA  - ru
ID  - VSGTU_2017_21_2_a0
ER  - 
%0 Journal Article
%A S. A. Aldashev
%T Well-posedness of the Dirichlet and Poincar\'e problems for~one class of hyperbolic equations in~a~ multidimensional~domain
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 209-220
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a0/
%G ru
%F VSGTU_2017_21_2_a0
S. A. Aldashev. Well-posedness of the Dirichlet and Poincar\'e problems for~one class of hyperbolic equations in~a~ multidimensional~domain. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 2, pp. 209-220. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_2_a0/

[1] Hadamard J., “Sur les problèmes aux dérivés partielles et leur signification physique”, Princeton University Bulletin, 13 (1902), 49–52 | MR

[2]

[3] Nakhushev A. M., Zadachi so smeshcheniem dlia uravneniia v chastnykh proizvodnykh [Problems with shifts for partial differential equations], Nauka, Moscow, 2006, 287 pp. (In Russian)

[4] Bourgin D. G., Duffin R., “The Dirichlet problem for the vibrating string equation”, Bull. Amer. Math. Soc., 45:12, Part 1 (1939), 851–858 https://projecteuclid.org/euclid.bams/1183502251 | MR

[5] Fox D. W., Pucci C., “The Dirichlet problem for the wave equation”, Annali di Mathematica Pura ed Applicata, 46:1 (1958), 155–182 | DOI | MR | Zbl

[6] Nahushev A. M., “A uniqueness condition of the Dirichlet problem for an equation of mixed type in a cylindrical domain”, Differ. Uravn., 6:1 (1970), 190–191 (In Russian) | MR | Zbl

[7] Dunninger D. R., Zachmanoglou E. C., “The condition for uniqueness of the Diriclet problem for hyperbolic equations in cilindrical domains”, J. Math. Mech., 18:8 (1969), 763–766 http://www.jstor.org/stable/24893135 | MR | Zbl

[8] Aldashev S. A., “The well-posedness of the Dirichlet problem in the cylindric domain for the multidimensional wave equation”, Mathematical Problems in Engineering, 2010 (2010), 653215, 7 pp | DOI | MR | Zbl

[9] Aldashev S. A., “The well-posedness of the Poincaré problem in the cylindric domain for the many-dimensional wave equation”, Sovremennaia matematika i ee prilozheniia [Modern mathematics and its applications], 67 (2010), 28–32 (In Russian)

[10] Aldashev S. A., “Well-posedness of the Poincaré problem in a cylindrical domain for the higher-dimensional wave equation”, Journal of Mathematical Science, 173:2 (2011), 150–154 | DOI | MR | Zbl

[11] Aldashev S. A., “Well-posedness of the Dirichlet problem in the cylindric domain for the many-dimensional hyperbolic equations with wave operator”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 13:1 (2011), 21–29 (In Russian) | MR

[12] Aldashev S. A., “Well-posedness of the Poincaré problem in the cylindric domain for the many-dimensional hyperbolic equations with wave operator”, Vychislitel'naia i prikladnaia matematika [Computational and Applied Mathematics], 2013, no. 4(114), 68–76 (In Russian)

[13] Aldashev S. A., “Well-posedness of the Dirichlet and Poincaré problems for the wave equation in a many-dimensional domain”, Ukr. Math. J., 66:10 (2014), 1582–1588 | DOI | MR

[14] Mikhlin S. G., Mnogomernye singuliarnye integraly i integral'nye uravneniia [Higher-dimensional singular integrals and integral equations], Fizmatlit, Moscow, 1962, 254 pp. (In Russian) | MR

[15] Aldashev S. A., Kraevye zadachi dlia mnogomernykh giperbolicheskikh i smeshannykh uravnenii [Boundary value problems for many-dimensional hyperbolic and mixed equations], Gylym, Almaty, 1994, 170 pp. (In Russian)

[16] Copson E. T., “On the Riemann–Green function”, Arch. Rational Mech. Anal., 1:1 (1957), 324–348 | DOI | MR

[17] Litvinchuk G. S., Kraevye zadachi i singuliarnye integral'nye uravneniia so sdvigom [Boundary value problems and singular integral equations with shift], Nauka, Moscow, 1973, 294 pp. (In Russian) | MR

[18] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, Bateman Manuscript Project, McGraw-Hill Book Co., New York, Toronto, London, 1953, xvii+396 pp. | Zbl

[19] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsional'nogo analiza [Elements of the theory of functions and functional analysis], Nauka, Moscow, 1976, 543 pp. (In Russian) | MR

[20] Smirnov V. I., Kurs vysshei matematiki [A Course in Higher Mathematics], v. 4, part 2, Nauka, Moscow, 1981, 550 pp. (In Russian) | MR