Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2017_21_1_a8, author = {A. V. Khokhlov}, title = {The nonlinear {Maxwell-type} model for viscoelastoplastic materials:}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {160--179}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a8/} }
TY - JOUR AU - A. V. Khokhlov TI - The nonlinear Maxwell-type model for viscoelastoplastic materials: JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2017 SP - 160 EP - 179 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a8/ LA - ru ID - VSGTU_2017_21_1_a8 ER -
%0 Journal Article %A A. V. Khokhlov %T The nonlinear Maxwell-type model for viscoelastoplastic materials: %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2017 %P 160-179 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a8/ %G ru %F VSGTU_2017_21_1_a8
A. V. Khokhlov. The nonlinear Maxwell-type model for viscoelastoplastic materials:. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 1, pp. 160-179. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a8/
[1] Khokhlov A. V., “Properties of stress-strain curves generated by the nonlinear Maxwell-type viscoelastoplastic model at constant stress rates”, Mashinostroenie i inzhenernoye obrazovanie, 2017, no. 1, 14–28 (In Russian)
[2] Khokhlov A. V., “Properties of the nonlinear Maxwell-type model with two material functions for viscoelastoplastic materials”, Moscow University Mechanics Bulletin. Ser.1. Matematica, mekhanica, 2016, no. 6, 36–41 (In Russian) | Zbl
[3] Khokhlov A. V., “The nonlinear Maxwell-type viscoelastoplastic model: properties of creep curves at piecewise-constant stress and the criterion for plastic strain accumulation”, Mashinostroenie i inzhenernoe obrazovanie, 2016, no. 3, 35–48 (In Russian)
[4] Khokhlov A. V., “Long-term strength curves generated by the nonlinear Maxwell-type model for viscoelastoplastic materials and the linear damage rule under step loading”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:3 (2016), 524–543 | DOI | Zbl
[5] Il'yushin A. A., Ogibalov P. M., “A certain generalization of the Voigt and Maxwell models”, Polymer Mechanics, 2:2 (1966), 122–124 | DOI
[6] Gorodtsov V. A., Leonov A. I., “On the kinematics, nonequilibrium thermodynamics, and rheological relationships in the nonlinear theory of viscoelasticity”, J. Appl. Math. Mech., 32:1 (1968), 62–84 | DOI | MR | Zbl
[7] Leonov A. I., Lipkina E. Ch., Paskhin E. D., Prokunin A. N., “Theoretical and experimental investigations of shearing in elastic polymer liquids”, Rheol. Acta, 15:7/8 (1976), 411–426 | DOI | Zbl
[8] Pal'mov V. A., “Rheological models in the nonlinear mechanics of deformable bodies”, Uspekhi mekhaniki, 3:3 (1980), 75–115 (In Russian) | MR
[9] Prokunin A. N., “On the non-linear Maxwell-type defining equations for describing the motions of polymer liquids”, J. Appl. Math. Mech., 48:6 (1984), 699–706 | DOI | MR | Zbl
[10] Larson R. G., Constitutive Equations for Polymer Melts and Solutions, Butterworth, Boston, 1988, 364 pp. | DOI
[11] Leonov A. I., “Analysis of simple constitutive equations for viscoelastic liquids”, Journal of Non-Newtonian Fluid Mechanics, 42:3 (1992), 323–350 | DOI | Zbl
[12] Leonov A. I., Prokunin A. N., Non-linear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, London, 1994, xvii+475 pp. | DOI
[13] Leonov A. I., “Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data”, Rheology Series, 8 (1999), 519–575 | DOI
[14] Kremple E., Ho K., “Inelastic Compressible and Incompressible, Isotropic, Small Strain Viscoplasticity Theory Based on Overstress (VBO)”, Handbook of Materials Behavior Models, Academic Press, New York, 2001, 336–348 | DOI
[15] Rabotnov Yu. N., Creep problems in structural members, North-Holland Publ. Co., Amsterdam, London, 1969, xiv+822 pp. | MR | Zbl
[16] Malinin N. N., Raschety na polzuchest' elementov mashinostroitel'nykh konstruktsii [Computations of Creeping of Engineering Construction Elements], Mashinostroenie, Moscow, 1981, 221 pp. (In Russian)
[17] Betten J., Creep Mechanics, Springer-Verlag, Berlin, Heidelberg, 2008, xiii+353 pp. | DOI
[18] Lokoshchenko A. M., Polzuchest' i dlitel'naia prochnost' metallov [Creep and Long-Term Strength of Metals], Fizmatlit, Moscow, 2016, 504 pp. (In Russian)
[19] Vasin R. A., Enikeev F. U., Introduction in mechanics of superplasticity, Gilem, Ufa, 1998, 280 pp. (In Russian)
[20] Nieh T. G., Wadsworth J., Sherby O. D., Superplasticity in metals and ceramics, Cambridge Solid State Science Series, Cambridge University Press, Cambridge, 1997, xiv+273 pp. | DOI
[21] Segal V. M., Beyerlein I. J., Tome C. N., Chuvil'deev V. N., Kopylov V. I., Fundamentals and Engineering of Severe Plastic Deformation, Nova Science Pub. Inc., New York, 2010, 542 pp.
[22] Cao Y., “Determination of the creep exponent of a power-law creep solid using indentation tests”, Mech. Time-Depend. Mater., 11:2 (2007), 159–172 | DOI
[23] Naumenko K., Altenbach H., Gorash Y., “Creep Analysis with a Stress Range Dependent Constitutive Model”, Arch. Appl. Mech., 79:6 (2009), 619–630 | DOI | Zbl
[24] Radchenko V. P., “Structural rheological model of a nonlinearly elastic material”, Soviet Applied Mechanics, 26:6 (1990), 577–582 | DOI | Zbl | Zbl
[25] Radchenko V. P., Shapievskii D. V., “Analysis of a nonlinear generalized Maxwell model”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2005, no. 38, 55–64 (In Russian) | DOI
[26] Radchenko V. P., Shapievskii D. V., “Drift of elastic deformation due to creep for nonlinear elastic materials”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2006, no. 43, 99–106 (In Russian) | DOI
[27] Radchenko V. P., Shapievskii D. V., “Mathematical model of creep for a microinhomogeneous nonlinearly elastic material”, J. Appl. Mech. Tech. Phys., 49:3 (2008), 478–483 | DOI | Zbl
[28] Radchenko V. P., Andreeva E. A., “On drift and memory effect of nonlinear elastic strain arising due to creep for micronon-uniform materials in conditions of linear stress”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2009, no. 2(19), 72–77 (In Russian) | DOI
[29] Khokhlov A. V., “Constitutive relation for rheological processes: Properties of theoretic creep curves and simulation of memory decay”, Mech. Solids, 42:2 (2007), 291–306 | DOI
[30] Khokhlov A. V., “Constitutive relation for rheological processes: Properties of theoretic creep curves and simulation of memory decay”, Mech. Solids, 42:2 (2007), 291–306 | DOI | MR
[31] Khohlov A. V., “The Qualitative Analysis of Theoretic Curves Generated by Linear Viscoelasticity Constitutive Equation”, Science and Education of the Bauman MSTU, 2016, no. 5, 187–245 (In Russian) | DOI
[32] Shesterikov S. A., Lokoshchenko A. M., “Creep and long-term strength of metals”, Itogi nauki i tekhniki. Ser. Mekh. deformiruem. tverd. tela [Achievements in Science and Technology. Ser. Mechanics of Solids], 13, VINITI, Moscow, 1980, 3–104 (In Russian)
[33] Radchenko V. P, Samarin Yu. P., “Effect of creep on the elastic deformation of a laminar composite”, Mech. Compos. Mater., 19:2 (1983), 162–168 | DOI
[34] Knets I. V., Vilks Yu. K., “Creep of compact human bony tissue under tension”, Polymer Mechanics, 11:4 (1975), 543–547 | DOI
[35] Melnis A. É;., Laizan Ya. B., “Nonlinear creep of human compact bone tissue upon stretching”, Polymer Mechanics, 14:1 (1978), 82–84 | DOI | MR
[36] Dandrea J., Lakes R. S., “Creep and creep recovery of cast aluminum alloys”, Mech. Time-Depend. Mater., 13:4 (2009), 303–315 | DOI | MR
[37] Khokhlov A. V., “Creep and relaxation curves produced by the Rabotnov nonlinear constitutive relation for viscoelastoplastic materials”, Problemy prochnosti i plastichnosti, 78:4 (2016), 452–466 (In Russian)
[38] Rabotnov Yu. N., “Some questions of the creep theory”, Vestnik MGU, 1948, no. 10, 81–91 (In Russian) | MR
[39] Il'iushin A. A., Pobedrya B. E., Osnovy matematicheskoi teorii termoviazkouprugosti [Fundamentals of the Mathematical Theory of Thermoviscoelasticity], Nauka, Moscow, 1970, 280 pp. (In Russian) | MR
[40] Vinogradov G. V., Malkin A. Ya., Rheology of Polymers. Viscoelasticity and Flow of Polymers, Springer-Verlag, Berlin, 1980, xii+468 pp. | DOI
[41] Kolarov D., Baltov A., Boncheva N., Mekhanika plasticheskikh sred [Mechanics of Plastic Media], Mir, Moscow, 1979, 304 pp. (In Russian)
[42] Kaibyshev O. A., Sverkhplastichnost' promyshlennykh splavov [Superplasticity of industrial alloys], Metallurgiia, Moscow, 1984, 264 pp. (In Russian)
[43] Brinson H. F., Brinson L. C., Polymer Engineering Science and Viscoelasticity, Springer Science, Berlin, 2008, xvi+446 pp. | DOI
[44] Bergstrom J. S., Mechanics of Solid Polymers. Theory and Computational Modeling, William Andrew is an imprint of Elsevier, Amsterdam, 2015, xiv+509 pp. | DOI
[45] Lin Y. C., Chen X.-M., “A critical review of experimental results and constitutive descriptions for metals and alloys in hot working”, Materials and Design, 32:4 (2011), 1733–1759 | DOI
[46] Lee W.-S., Lin C.-R., “Deformation behavior and microstructural evolution of 7075-T6 aluminum alloy at cryogenic temperatures”, Cryogenics, 79 (2016), 26–34 | DOI