Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2017_21_1_a7, author = {V. A. Petushkov}, title = {Transient dynamics of {3D} inelastic heterogeneous media analysis}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {137--159}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a7/} }
TY - JOUR AU - V. A. Petushkov TI - Transient dynamics of 3D inelastic heterogeneous media analysis JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2017 SP - 137 EP - 159 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a7/ LA - ru ID - VSGTU_2017_21_1_a7 ER -
%0 Journal Article %A V. A. Petushkov %T Transient dynamics of 3D inelastic heterogeneous media analysis %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2017 %P 137-159 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a7/ %G ru %F VSGTU_2017_21_1_a7
V. A. Petushkov. Transient dynamics of 3D inelastic heterogeneous media analysis. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 1, pp. 137-159. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a7/
[1] Maiboroda V. P., Kravchuk A. S., Kholin N. N., Skorostnoe deformirovanie konstruktsionnykh materialov [High-Velocity Deformation of Structural Materials], Mashinostroenie, Moscow, 1986, 264 pp. (In Russian)
[2] Wrobel L. C., Aliabadi M. H., The Boundary Element Method, v. 1, Applications in Thermo-Fluids and Acoustics, John Wiley Sons, Ltd., New York, 2007, 1066 pp.
[3] Liu Y. J., Mukherjee S., Nishimura N., Schanz M. at all, “Recent Advances and Emerging Applications of the Boundary Element Method”, Appl. Mech. Rev., 64:3 (2012), 030802, 38 pp. | DOI
[4] Hayami K., “Variable transformations for nearly singular integrals in the boundary element method”, Publ. Res. Inst. Math. Sci., 41:4 (2005), 821–842 | DOI | Zbl
[5] Hayami K., Costabel M., “Time-dependent problems with the boundary integral equation method”, Encyclopedia of Computational Mechanics, John Wiley Sons, Ltd., New York, 2004, 703–721 | DOI
[6] Rjasanow S., Steinbach O., The Fast Solution of Boundary Integral Equations, Mathematical and Analytical Techniques with Applications to Engineering, Springer, Heidelberg, 2007, xi+279 pp. | DOI | Zbl
[7] Hsiao G. C., Wendland W. L., Boundary Integral Equations, Applied Mathematical Sciences, 164, Springer, Berlin, 2008, xix+618 pp. | DOI | Zbl
[8] Hatzigeorgiou G. D., “Dynamic Inelastic Analysis with BEM: Results and Needs”, Recent Advances in Boundary Element Methods, eds. G. D. Manolis, D. Polyzos, Springer, Berlin, 2009, 193–208 pp. | DOI | Zbl
[9] Hatzigeorgiou G. D., Beskos D. E., “Dynamic inelastic structural analysis by the BEM: A review”, Engineering Analysis with Boundary Elements, 35:2 (2011), 159–169 | DOI | Zbl
[10] Kupradze V. D., Burchuladze T. V., “The dynamical problems of the theory of elasticity and thermoelasticity”, J. Soviet Math., 7:3 (1977), 415–500 | DOI | Zbl
[11] Soares D., “Dynamic analysis of elastoplastic models considering combined formulations of the time-domain boundary element method”, Engineering Analysis with Boundary Elements, 55 (2015), 28–39 | DOI | Zbl
[12] Petushkov V. A., Potapov A. I., “Numerical solutions of three-dimensional dynamic problems in elasticity theory”, Book of Abstracts of the Seventh All-Union Congress on Theoretical and Applied Mechanics, Moscow State Univ., Moscow, 1991, 286–287 (In Russian)
[13] Petushkov V. A., Shneiderovich R. M., “Thermoelasticplastic deformation of corrugated shells of revolution at finite displacements”, Strength of Materials, 11:6 (1979), 578–585 | DOI
[14] Petushkov V. A., “Numerical realization of the method of boundary integral equations as applied to nonlinear problems of mechanics of deformation and fracture of volume bodies”, Model. Mekh., 3(20):1 (1989), 133–156 (In Russian) | Zbl
[15] Petushkov V. A., “Simulation of nonlinear deformation and fracture of heterogeneous media based on the generalized method of integral representations”, Matem. Mod., 27:1 (2015), 113–130 (In Russian) | Zbl
[16] Costabel M., “Boundary Integral Operators on Lipschitz Domains: Elementary Results”, SIAM J. Math. Anal., 19:3 (1988), 613–626 | DOI | Zbl
[17] Strang G., Fix G., “An Analysis of the Finite Element Method, 2nd edition”, Wellesley-Cambridge Press, MA, Wellesley, 2008, 400 pp. | Zbl
[18] Hsiao G. C., Steinbach O., Wendland W. L., “Domain decomposition methods via boundary integral equations”, Journal of Computational and Applied Mathematics, 125:1–2 (2000), 521–537 | DOI | Zbl
[19] Petushkov V. A., Zysin V. I., ““MEGRE-3D” software package for numerical simulation of nonlinear processes of deformation and fracture 3D bodies”, Algorithms and implementation in OS ES", Programmnoye obespecheniye matematicheskogo modelirovaniya [Software for Mathematical Simulation], Nauka, Moscow, 1992, 111–126 (In Russian)
[20] V. A. Petushkov, “Boundary Integral Equation Method in the Modeling of Nonlinear Deformation and Failure of the 3D Inhomogeneous Media”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 2(35), 96–114 (In Russian) | DOI | Zbl
[21] GiD—The Personal Pre and Post Processor (ver. 11), CIMNE, Barcelona, 1998
[22] Petushkov V. A., Frolov K. V., “Dynamics of hydroelastic systems with pulsed excitation”, Dinamika konstruktsii gidroaerouprugikh sistem [Dynamics of constructions of hydroaeroelastic systems], Nauka, Moscow, 2002, 162–202 pp. (In Russian)