Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2017_21_1_a5, author = {A. V. Tarasenko and I. P. Egorova}, title = {On nonlocal problem with fractional {Riemann--Liouville} derivatives}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {112--121}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a5/} }
TY - JOUR AU - A. V. Tarasenko AU - I. P. Egorova TI - On nonlocal problem with fractional Riemann--Liouville derivatives JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2017 SP - 112 EP - 121 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a5/ LA - ru ID - VSGTU_2017_21_1_a5 ER -
%0 Journal Article %A A. V. Tarasenko %A I. P. Egorova %T On nonlocal problem with fractional Riemann--Liouville derivatives %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2017 %P 112-121 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a5/ %G ru %F VSGTU_2017_21_1_a5
A. V. Tarasenko; I. P. Egorova. On nonlocal problem with fractional Riemann--Liouville derivatives. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 1, pp. 112-121. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a5/
[1] Samko St. G., Kilbas A. A., Marichev O. I., Fractional integrals and derivatives: theory and applications, Gordon and Breach, New York, NY, 1993, xxxvi+976 pp. | MR | MR | Zbl
[2] Saigo M., “A remark on integral operators involving the Gauss hypergeometric function”, Math. Rep. Coll. Gen. Educ., Kyushu Univ., 11:2 (1978), 135–143 | MR | Zbl
[3] Kilbas A. A., Repin O. A., “An Analog of the Bitsadze–Samarskii Problem for a Mixed Type Equation with a Fractional Derivative”, Differ. Equ., 39:5 (2003), 674–680 | DOI | MR | MR | Zbl
[4] Gekkieva S. Kh., “An analog of the Tricomi problem for a mixed type equation with a partial fractional derivative”, Izvestiya Kabardino-Balkarskaya Nauchnoogo Tsentra RAN, 2001, no. 2(7), 78–80 (In Russian)
[5] Kilbas A. A., Repin O. A., “Analog of the Tricomi problem for differential equations with partial derivatives containing fractional diffusion equation”, Dokl. AMAN, 12:1 (2010), 31–39 (In Russian) | MR
[6] Pskhu A. V., Uravneniya v chastnykh proizvodnykh drobnogo poryadka [Partial Differential Equations of Fractional Order], Nauka, Moscow, 2005, 199 pp. (In Russian) | MR
[7] Smirnov M. M., Vyrozhdaiushchiesia ellipticheskie i giperbolicheskie uravneniia [Degenerate Elliptic and Hyperbolic Equation], Nauka, Moscow, 1966, 292 pp. (In Russian) | MR
[8] Nakhushev A. M., Drobnoe ischislenie ego primenenie [Fractional Calculation and its Application], Fizmatlit, Moscow, 2009, 272 pp. (In Russian)
[9] Nakhusheva V. A., Differentsial'nye uravneniia matematicheskikh modelei nelokal'nykh protsessov [Differential Equations of Mathematical Models of Non-Local Processes], Nauka, Moscow, 2006, 173 pp. (In Russian) | MR