On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 1, pp. 7-41.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article explores a one-dimensional system of equations for the discrete model of a gas (Carleman system of equations). The Carleman system is the Boltzmann kinetic equation of a model one-dimensional gas consisting of two particles. For this model, momentum and energy are not retained. On the example of the Carleman model, the essence of the Boltzmann equation can be clearly seen. It describes a mixture of “competing” processes: relaxation and free movement. We prove the existence of a global solution of the Cauchy problem for the perturbation of the equilibrium state with periodic initial data. For the first time we calculate the stabilization speed to the equilibrium state (exponential stabilization).
Keywords: kinetic equation, equilibrium state, secular terms, generalized solution.
Mots-clés : Carleman equation, Fourier solution
@article{VSGTU_2017_21_1_a0,
     author = {S. A. Dukhnovskii},
     title = {On a speed of solutions stabilization of the {Cauchy} problem for the {Carleman} equation with periodic initial data},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {7--41},
     publisher = {mathdoc},
     volume = {21},
     number = {1},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a0/}
}
TY  - JOUR
AU  - S. A. Dukhnovskii
TI  - On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2017
SP  - 7
EP  - 41
VL  - 21
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a0/
LA  - ru
ID  - VSGTU_2017_21_1_a0
ER  - 
%0 Journal Article
%A S. A. Dukhnovskii
%T On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2017
%P 7-41
%V 21
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a0/
%G ru
%F VSGTU_2017_21_1_a0
S. A. Dukhnovskii. On a speed of solutions stabilization of the Cauchy problem for the Carleman equation with periodic initial data. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 21 (2017) no. 1, pp. 7-41. http://geodesic.mathdoc.fr/item/VSGTU_2017_21_1_a0/

[1] Godunov S. K., Sultangazin U. M., “On discrete models of the kinetic Boltzmann equation”, Russian Math. Surveys, 26:3 (1971), 1–56 | DOI | MR | Zbl

[2] Broadwell T. E., “Study of rarefied shear flow by the discrete velocity method”, Journal of Fluid Mechanics, 19:3 (1971), 401–414 | DOI

[3] Vedenyapin V., Sinitsyn A., Dulov E., Kinetic Boltzmann, Vlasov and related equations, Elsevier, Amsterdam, 2011, xiii+304 pp. | DOI | Zbl

[4] Vasil'eva O. A., Dukhnovskii S. A., Radkevich E. V., “On the nature of local equilibrium in the Carleman and Godunov–Sultangazin equations”, Proceedings of the Seventh International Conference on Differential and Functional-Differential Equations (Moscow, August 22–29, 2014). Part 3, CMFD, 60, PFUR, Moscow, 2016, 23–81 (In Russian)

[5] Carleman T., Probèmes mathématiques dans la théorie cinetique des gaz, Publications Scientifiques de l’Institut Mittag–Leffler, 2, Almqvist Wiksells, Uppsala, 1957, 112 pp. | Zbl

[6] Boltzmann L., Lectures on Gas Theory, University of California Press, Berkeley, 1964, 490 pp.

[7] Radkevich E. V., Vasil'eva O. A., Dukhnovskii S. A., “Local equilibrium of the Carleman equation”, Journal of Mathematical Sciences, 207:2 (2015), 296–323 | DOI | Zbl

[8] Godunov S. K., “The problem of a generalized solution in the theory of quasi-linear equations and in gas dynamics”, Russian Math. Surveys, 17:3 (1962), 145–156 | DOI | MR | Zbl

[9] Il'in O. V., “Investigation of the existence of solutions and of the stability of the Carleman kinetic system”, Comput. Math. Math. Phys., 47:12 (2007), 1990–2001 | DOI | MR

[10] Vasil'eva O. A., Dukhnovskiy S. A., “Secularity Condition of the Kinetic Carleman System”, Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering], 2015, no. 7, 33–40 (In Russian) | DOI

[11] Buslaev V., Komech A., Kopylova E. A., Stuart D., “On asymptotic stability of solitary waves in Schrödinger equation coupled to nonlinear oscillator”, Commun. Partial Differ. Equations, 33:4 (2008), 669–705 | DOI | Zbl

[12] Komech A., Kopylova E. A., “On asymptotic stability of solitons in a nonlinear Schrödinger equation”, Commun. Pure Appl. Anal., 11:3 (2012), 1063–1079 | DOI | Zbl

[13] Komech A., Kopylova E. A., Dispersion decay and scattering theory, John Willey and Sons, New Jersey, 2012, 175+xxvi pp. | DOI | Zbl

[14] Kopylova E. A., “On long-time decay for magnetic Schrödinger and Klein–Gordon equations”, Proc. Steklov Inst. Math., 278 (2012), 121–129 | DOI | MR | Zbl

[15] Buslaev V. S., Perel'man G. S., “Scattering for the nonlinear Schrödinger equation: States close to a soliton”, St. Petersburg Math. J., 4:6 (1993), 1111–1142 | MR | Zbl

[16] Buslaev V. S., Perelman G. S., “On the stability of solitary waves for nonlinear Schrödinger equations”, Amer. Math. Soc. Transl., 164:22 (1995), 75–98 | Zbl

[17] Buslaev V. S., Sulem C., “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Annales de l'Institut Henri Poincare (C) Non Linear Analysis, 20:3 (2003), 419–475, arXiv: math-ph/0702013 | DOI | Zbl

[18] Vainberg B. R., Asimptoticheskie metody v uravneniiakh matematicheskoi fiziki [Asymptotic methods in equations of mathematical physics], Moscow Univ. Publ., Moscow, 1982, 294 pp. (In Russian) | Zbl

[19] Vainberg B. R., “On the short wave asymptotic behaviour of solutions of stationary problems and the asymptotic behaviour as $t\to \infty$ of solutions of non-stationary problems”, Russian Math. Surveys, 30:2 (1975), 1–58 | DOI | MR | Zbl

[20] Vainberg B. R., “Behavior of the solutions of the Klein–Gordon equation for large values of time”, Tr. Mosk. Mat. Obs., 30, Moscow Univ. Publ., Moscow, 1974, 139–158 (In Russian) | MR | Zbl

[21] Morawetz C. S., Strauss W. A., “Decay and scattering of solutions of a nonlinear relativistic wave equation”, Commun. Pure Appl. Anal., 25:1 (1972), 1–31 | DOI | Zbl

[22] Dukhnovskiy S. A., “On Estimates of the Linearized Operator of the Kinetic Carleman System”, Vestnik MGSU [Proceedings of Moscow State University of Civil Engineering], 2016, no. 9, 7–14 (In Russian) | DOI