The use of linear fractional analogues of rheological models in the problem of~approximating the experimental data
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 691-706.

Voir la notice de l'article provenant de la source Math-Net.Ru

We considere and analyze the uniaxial phenomenological models of viscoelastic deformation based on fractional analogues of Scott Blair, Voigt, Maxwell, Kelvin and Zener rheological models. Analytical solutions of the corresponding differential equations are obtained with fractional Riemann–Liouville operators under constant stress with further unloading, that are written by the generalized (two-parameter) fractional exponential function and contains from two to four parameters depending on the type of model. A method for identifying the model parameters based on the background information for the experimental creep curves with constant stresses was developed. Nonlinear problem of parametric identification is solved by two-step iterative method. The first stage uses the characteristic data points diagrams and features in the behavior of the models under unrestricted growth of time and the initial approximation of parameters are determined. At the second stage, the refinement of these parameters by coordinate descent (the Hooke–Jeeves's method) and minimizing the functional standard deviation for calculated and experimental values is made. Method of identification is realized for all the considered models on the basis of the known experimental data uniaxial viscoelastic deformation of Polyvinylchloride Elastron at a temperature of 20$^\circ$C and five the tensile stress levels. Table-valued parameters for all models are given. The errors analysis of constructed phenomenological models is made to experimental data over the entire ensemble of curves viscoelastic deformation. It was found that the approximation errors for the Scott Blair fractional model is 14.17 %, for the Voigt fractional model is 11.13 %, for the Maxvell fractional model is 13.02 %, for the Kelvin fractional model 10.56 %, for the Zener fractional model is 11.06 %. The graphs of the calculated and experimental dependences of viscoelastic deformation of Polyvinylchloride Elastron are submitted.
Keywords: fractional rheological models, parameter identification, Riemann–Liouville operator, experimental data, approximation error.
Mots-clés : polyvinylchloride elastron
@article{VSGTU_2016_20_4_a8,
     author = {L. G. Ungarova},
     title = {The use of linear fractional analogues of rheological models in the problem of~approximating the experimental data},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {691--706},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a8/}
}
TY  - JOUR
AU  - L. G. Ungarova
TI  - The use of linear fractional analogues of rheological models in the problem of~approximating the experimental data
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 691
EP  - 706
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a8/
LA  - ru
ID  - VSGTU_2016_20_4_a8
ER  - 
%0 Journal Article
%A L. G. Ungarova
%T The use of linear fractional analogues of rheological models in the problem of~approximating the experimental data
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 691-706
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a8/
%G ru
%F VSGTU_2016_20_4_a8
L. G. Ungarova. The use of linear fractional analogues of rheological models in the problem of~approximating the experimental data. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 691-706. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a8/

[1] Ogorodnikov E. N., Radchenko V. P., Ungarova L. G., “Mathematical modeling of hereditary elastically deformable body on the basis of structural models and fractional integro-differentiation Riemann-Liouville apparatus”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 167–194 (In Russian) | DOI | Zbl

[2] Radchenko V. P., Goludin E. P., “Phenomenological stochastic isothermal creep model for an polivinylchloride elastron”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 1(16), 45–52 (In Russian) | DOI

[3] Volterra V., “Sulle equazioni integro-differenziali della teoria dell'elasticità”, Rend. Acc. Naz. Lincei, 18 (1909), 295–301 | Zbl

[4] Volterra V., Theory of functionals and of integral and integro-differential equations, Dover Publ., Inc., New York, 1959, 226 pp. | MR | Zbl

[5] Boltzmann L., “Theorie der elastischen Nachwirkung (Theory of elastic after effects)”, Wien. Ber., 70 (1874), 275–306 ; Boltzman L., “Zur Theorie der elastischen Nachwirkung (On the elastic after effect)”, Pogg. Ann. (2), 5 (1878), 430–432 ; Boltzman L., “Zur Theorie der elastischen Nachwirkung”, Wissenschaftliche Abhandlungen, v. 2, Cambridge Library Collection, ed. Friedrich Hasenöhrl, Cambridge University Press, Cambridge, 2012, 318–320 | Zbl | Zbl | DOI

[6] Rabotnov Yu. N., “Equilibrium of an elastic medium with after-effect”, Fractional Calculus and Applied Analysis, 17:3 (2014), 684–696 | DOI | MR | MR | Zbl | Zbl

[7] Duffing G., “Elastizität und Reibung beim Riementrieb (Elasticity and friction of the belt drive)”, Forschung auf dem Gebiet des Ingenieurwesens A, 2:3 (1931), 99–104 | DOI | Zbl

[8] Gemant A., “A Method of Analyzing Experimental Results Obtained from Elasto-Viscous Bodies”, J. Appl. Phys., 7 (1936), 311–317 | DOI

[9] Gemant A., “On fractional differentials”, Philos. Mag., VII. Ser., 25 (1938), 540–549 | Zbl

[10] Bronskij A. P., “Residual effect in rigid bodies”, Prikl. Mat. Mekh., 5:1 (1941), 31–56 (In Russian) | MR | Zbl

[11] Slonimsky G. L., “On the laws of deformation of real materials. I. The theories of Maxwell and Boltzmann”, Acta physicochim. URSS, 12 (1940), 99–128 | MR | Zbl

[12] Gerasimov A. N., “A generalization of linear laws of deformation and its application to internal friction problem”, Prikl. Mat. Mekh., 12:3 (1948), 251–260 (In Russian) | Zbl

[13] Bugakov I. I., Polzuchest' polimernykh materialov [Creep of Polymer Materials], Nauka, Moscow, 1973, 288 pp. (In Russian)

[14] Podlubny I., Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, xxiv+340 pp. | MR | Zbl

[15] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, xx+523 pp. | MR | Zbl

[16] Uchaikin V. V., Metod drobnykh proizvodnykh [The fractional derivatives method], Artishok, Ulyanovsk, 2008, 512 pp. (In Russian)

[17] Mainardi F., Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models, World Scientific, Hackensack, NJ, 2010, xx+347 pp | DOI | MR | Zbl

[18] Schmidt A., Gaul L., “Parameter Identification and FE Implementation of a Viscoelastic Constitutive Equation Using Fractional Derivatives”, Proc. Appl. Math. Mech., 1(1) (2002), 153–154 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl

[19] Lewandowski R., Chorążyczewski B., “Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers”, Computers and Structures, 88:1–2 (2009), 1–17 | DOI

[20] Elements of hereditary solid mechanics, Mir Publ., Moscow, 1980, 388 pp. | MR | Zbl

[21] Zvonov E. N., Malinin N. I., Papernik L. H., Ceytlin B. M., “Determination of the creep characteristics of linear elastic-hereditary materials using an electronic digital computer”, Izv. AN SSSR, MTT, 1968, no. 5, 76–85 (In Russian)

[22] Vasques C. M. A., Dias Rodrigues J., Moreira R. A. S., “Experimental identification of GHM and ADF parameters for viscoelastic damping modeling”, III European Conference on Computational Mechanics, Springer, Berlin, 2006 | DOI

[23] Erokhin S. V., Aleroev T. S., Frishter L. Yu., Kolesnichenko A. V., “Parameter identification of the viscoelastic materials mathematical model using fractional derivatives”, International Journal for Computational Civil and Structural Engineering, 11:3 (2015), 82–86 (In Russian) | MR

[24] Abusaitova L. G., Ogorodnikov E. N., “Some special functions associated with the Mittag–Leffler function, their properties, and applications”, Nelokal'nye kraevye zadachi i problemy sovremennogo analiza i informatiki [Non-local boundary value problems and problems of modern analysis and informatics], Nalchik, 2012, 13–15 (In Russian)

[25] Bateman G., Erdelyi A., Higher Transcendental Functions, v. 1, McGraw-Hill, New York, 1953, 302 pp. | Zbl

[26] Ogorodnikov E. N., Yashagin N. S., “Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2009, no. 1(18), 276–279 (In Russian) | DOI

[27] Dzhrbashyan M. M., Integral'nye preobrazovaniia i predstavleniia funktsii v kompleksnoi oblasti [Integral Transforms and Representation of Functions in Complex Domain], Nauka, Moscow, 1966, 672 pp. (In Russian) | Zbl

[28] Hooke R., Jeeves T. A., ““Direct Search” Solution of Numerical and Statistical Problems”, Journal of the ACM (JACM), 1961, no. 8, 212–229 | DOI | Zbl