Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_4_a8, author = {L. G. Ungarova}, title = {The use of linear fractional analogues of rheological models in the problem of~approximating the experimental data}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {691--706}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a8/} }
TY - JOUR AU - L. G. Ungarova TI - The use of linear fractional analogues of rheological models in the problem of~approximating the experimental data JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 691 EP - 706 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a8/ LA - ru ID - VSGTU_2016_20_4_a8 ER -
%0 Journal Article %A L. G. Ungarova %T The use of linear fractional analogues of rheological models in the problem of~approximating the experimental data %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 691-706 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a8/ %G ru %F VSGTU_2016_20_4_a8
L. G. Ungarova. The use of linear fractional analogues of rheological models in the problem of~approximating the experimental data. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 691-706. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a8/
[1] Ogorodnikov E. N., Radchenko V. P., Ungarova L. G., “Mathematical modeling of hereditary elastically deformable body on the basis of structural models and fractional integro-differentiation Riemann-Liouville apparatus”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 167–194 (In Russian) | DOI | Zbl
[2] Radchenko V. P., Goludin E. P., “Phenomenological stochastic isothermal creep model for an polivinylchloride elastron”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 1(16), 45–52 (In Russian) | DOI
[3] Volterra V., “Sulle equazioni integro-differenziali della teoria dell'elasticità”, Rend. Acc. Naz. Lincei, 18 (1909), 295–301 | Zbl
[4] Volterra V., Theory of functionals and of integral and integro-differential equations, Dover Publ., Inc., New York, 1959, 226 pp. | MR | Zbl
[5] Boltzmann L., “Theorie der elastischen Nachwirkung (Theory of elastic after effects)”, Wien. Ber., 70 (1874), 275–306 ; Boltzman L., “Zur Theorie der elastischen Nachwirkung (On the elastic after effect)”, Pogg. Ann. (2), 5 (1878), 430–432 ; Boltzman L., “Zur Theorie der elastischen Nachwirkung”, Wissenschaftliche Abhandlungen, v. 2, Cambridge Library Collection, ed. Friedrich Hasenöhrl, Cambridge University Press, Cambridge, 2012, 318–320 | Zbl | Zbl | DOI
[6] Rabotnov Yu. N., “Equilibrium of an elastic medium with after-effect”, Fractional Calculus and Applied Analysis, 17:3 (2014), 684–696 | DOI | MR | MR | Zbl | Zbl
[7] Duffing G., “Elastizität und Reibung beim Riementrieb (Elasticity and friction of the belt drive)”, Forschung auf dem Gebiet des Ingenieurwesens A, 2:3 (1931), 99–104 | DOI | Zbl
[8] Gemant A., “A Method of Analyzing Experimental Results Obtained from Elasto-Viscous Bodies”, J. Appl. Phys., 7 (1936), 311–317 | DOI
[9] Gemant A., “On fractional differentials”, Philos. Mag., VII. Ser., 25 (1938), 540–549 | Zbl
[10] Bronskij A. P., “Residual effect in rigid bodies”, Prikl. Mat. Mekh., 5:1 (1941), 31–56 (In Russian) | MR | Zbl
[11] Slonimsky G. L., “On the laws of deformation of real materials. I. The theories of Maxwell and Boltzmann”, Acta physicochim. URSS, 12 (1940), 99–128 | MR | Zbl
[12] Gerasimov A. N., “A generalization of linear laws of deformation and its application to internal friction problem”, Prikl. Mat. Mekh., 12:3 (1948), 251–260 (In Russian) | Zbl
[13] Bugakov I. I., Polzuchest' polimernykh materialov [Creep of Polymer Materials], Nauka, Moscow, 1973, 288 pp. (In Russian)
[14] Podlubny I., Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, xxiv+340 pp. | MR | Zbl
[15] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, xx+523 pp. | MR | Zbl
[16] Uchaikin V. V., Metod drobnykh proizvodnykh [The fractional derivatives method], Artishok, Ulyanovsk, 2008, 512 pp. (In Russian)
[17] Mainardi F., Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models, World Scientific, Hackensack, NJ, 2010, xx+347 pp | DOI | MR | Zbl
[18] Schmidt A., Gaul L., “Parameter Identification and FE Implementation of a Viscoelastic Constitutive Equation Using Fractional Derivatives”, Proc. Appl. Math. Mech., 1(1) (2002), 153–154 | 3.0.CO;2-J class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | Zbl
[19] Lewandowski R., Chorążyczewski B., “Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers”, Computers and Structures, 88:1–2 (2009), 1–17 | DOI
[20] Elements of hereditary solid mechanics, Mir Publ., Moscow, 1980, 388 pp. | MR | Zbl
[21] Zvonov E. N., Malinin N. I., Papernik L. H., Ceytlin B. M., “Determination of the creep characteristics of linear elastic-hereditary materials using an electronic digital computer”, Izv. AN SSSR, MTT, 1968, no. 5, 76–85 (In Russian)
[22] Vasques C. M. A., Dias Rodrigues J., Moreira R. A. S., “Experimental identification of GHM and ADF parameters for viscoelastic damping modeling”, III European Conference on Computational Mechanics, Springer, Berlin, 2006 | DOI
[23] Erokhin S. V., Aleroev T. S., Frishter L. Yu., Kolesnichenko A. V., “Parameter identification of the viscoelastic materials mathematical model using fractional derivatives”, International Journal for Computational Civil and Structural Engineering, 11:3 (2015), 82–86 (In Russian) | MR
[24] Abusaitova L. G., Ogorodnikov E. N., “Some special functions associated with the Mittag–Leffler function, their properties, and applications”, Nelokal'nye kraevye zadachi i problemy sovremennogo analiza i informatiki [Non-local boundary value problems and problems of modern analysis and informatics], Nalchik, 2012, 13–15 (In Russian)
[25] Bateman G., Erdelyi A., Higher Transcendental Functions, v. 1, McGraw-Hill, New York, 1953, 302 pp. | Zbl
[26] Ogorodnikov E. N., Yashagin N. S., “Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2009, no. 1(18), 276–279 (In Russian) | DOI
[27] Dzhrbashyan M. M., Integral'nye preobrazovaniia i predstavleniia funktsii v kompleksnoi oblasti [Integral Transforms and Representation of Functions in Complex Domain], Nauka, Moscow, 1966, 672 pp. (In Russian) | Zbl
[28] Hooke R., Jeeves T. A., ““Direct Search” Solution of Numerical and Statistical Problems”, Journal of the ACM (JACM), 1961, no. 8, 212–229 | DOI | Zbl