Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_4_a5, author = {T. K. Yuldashev}, title = {An ordinary integro-differential equation with~a~degenerate kernel and an integral condition}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {644--655}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a5/} }
TY - JOUR AU - T. K. Yuldashev TI - An ordinary integro-differential equation with~a~degenerate kernel and an integral condition JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 644 EP - 655 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a5/ LA - ru ID - VSGTU_2016_20_4_a5 ER -
%0 Journal Article %A T. K. Yuldashev %T An ordinary integro-differential equation with~a~degenerate kernel and an integral condition %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 644-655 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a5/ %G ru %F VSGTU_2016_20_4_a5
T. K. Yuldashev. An ordinary integro-differential equation with~a~degenerate kernel and an integral condition. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 644-655. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a5/
[1] Bang N. D., Chistyakov V. F., Chistyakova E. V., “About some properties of degenerate systems of linear integro-differential equations. I”, IIGU Ser. Matematika, 11 (2015), 13–27 (In Russian) | Zbl
[2] Bykov Ya. V., O nekotorykh zadachakh teorii integro-differentsial'nykh uravnenii [On some problems in the theory of integrodifferential equations], Kirgiz. State Univ., Frunze, 1957, 327 pp. (In Russian)
[3] Vainberg M. M., “Integro-differential equations”, Itogi Nauki. Ser. Mat. Anal. Teor. Ver. Regulir. 1962, VINITI, Moscow, 1964, 5–37 (In Russian) | MR | Zbl
[4] Vasil'ev V. V., “On the solution of the Cauchy problem for a class of linear integro-differential equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1961, no. 4, 8–24 (In Russian) | MR | Zbl
[5] Vigranenko T. I., “A boundary value problem for linear integro-differential equations”, Zap. Leningrad. gornogo in-ta, 33:3 (1956), 176–186 (In Russian)
[6] Vlasov V. V., Perez Ortiz R., “Spectral analysis of integro-differential equations in viscoelasticity and thermal physics”, Math. Notes, 98:4 (2015), 689–693 | DOI | DOI | MR | Zbl
[7] Krivoshein L. E., “A method of solving certain linear integro-differential equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1960, no. 3, 168–172 (In Russian) | MR | Zbl
[8] Lando Yu. K., “A boundary-value problem for linear integro-differential equations of Volterra type in the case of disjoint boundary conditions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1961, no. 3, 56–65 (In Russian) | MR | Zbl
[9] Shishkin G. A., “Justification of a method for solving integro-differential Fredholm equations with functional delay”, Korrektnye kraevye zadachi dlia neklassicheskikh uravnenii matematicheskoi fiziki [Correct boundary value problems for nonclassical equations of mathematical physics], Institute of Mathematics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk, 1980, 172–178 (In Russian) | Zbl
[10] Falaleev M. V., “Integro-differential equations with Fredholm operator by the derivative of the higest order in Banach spaces and it's applications”, IIGU Ser. Matematika, 5:2 (2012), 90–102 (In Russian) | Zbl
[11] Gordeziani D. G., Avalishvili G. A., “On the constructing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations”, Matem. Mod., 12:1 (2000), 94–103 (In Russian) | MR | Zbl
[12] Tikhonov I. V., “Uniqueness theorems for linear non-local problems for abstract differential equations”, Izv. Math., 67:2 (2003), 333–363 | DOI | DOI | MR | Zbl
[13] Pul'kina L. S., “A nonlocal problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels”, Russian Math. (Iz. VUZ), 56:10 (2012), 26–37 | DOI | MR | Zbl
[14] Sabitova Yu. K., “Boundary-value problem with nonlocal integral condition for mixed-type equations with degeneracy on the transition line”, Math. Notes, 98:3 (2015), 454–465 | DOI | DOI | MR | Zbl
[15] Tagiyev R. K., Gabibov V. M., “On optimal control problem for the heat equation with integral boundary condition”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 54–64 (In Russian) | DOI | MR | Zbl
[16] Yuldashev T. K., “Inverse Problem for a Fredholm Third Order Partial Integro-differential Equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 1(34), 56–65 (In Russian) | DOI | Zbl
[17] Yuldashev T. K., “A double inverse problem for Fredholm integro-differential equation of elliptic type”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 2(35), 39–49 (In Russian) | DOI | Zbl
[18] Yuldashev T. K., “A certain Fredholm partial integro-differential equation of the third order”, Russian Math. (Iz. VUZ), 59:9 (2015), 62–66 | DOI | MR | Zbl
[19] Yuldashev T. K., “An inverse problem for a nonlinear Fredholm integro-differential equation of fourth order with degenerate kernel”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 736–749 (In Russian) | DOI
[20] Yuldashev T. K., “Inverse problem for a third order Fredholm integro-differential equation with degenerate kernel”, Vladikavkaz. Mat. Zh., 18:2 (2016), 76–85 (In Russian) | MR
[21] Trenogin V. A., Funktsional'nyi analiz [Functional analysis], Nauka, Moscow, 1980, 495 pp. (In Russian) | MR