An ordinary integro-differential equation with~a~degenerate kernel and an integral condition
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 644-655.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the questions of one value solvability of the nonlocal boundary value problem for a nonlinear ordinary integro-differential equation with a degenerate kernel and a reflective argument. The method of the degenerate kernel is developed for the case of considering ordinary integro-differential equation of the first order. After denoting the integro-differential equation is reduced to a system of algebraic equations with complex right-hand side. After some transformation we obtaine the nonlinear functional-integral equation, which one valued solvability is proved by the method of successive approximations combined with the method of compressing mapping. This paper advances the theory of nonlinear integro-differential equations with a degenerate kernel.
Keywords: integro-differential equation, degenerate kernel, reflective argument, integral form condition, one valued solvability.
@article{VSGTU_2016_20_4_a5,
     author = {T. K. Yuldashev},
     title = {An ordinary integro-differential equation with~a~degenerate kernel and an integral condition},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {644--655},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a5/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - An ordinary integro-differential equation with~a~degenerate kernel and an integral condition
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 644
EP  - 655
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a5/
LA  - ru
ID  - VSGTU_2016_20_4_a5
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T An ordinary integro-differential equation with~a~degenerate kernel and an integral condition
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 644-655
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a5/
%G ru
%F VSGTU_2016_20_4_a5
T. K. Yuldashev. An ordinary integro-differential equation with~a~degenerate kernel and an integral condition. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 644-655. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a5/

[1] Bang N. D., Chistyakov V. F., Chistyakova E. V., “About some properties of degenerate systems of linear integro-differential equations. I”, IIGU Ser. Matematika, 11 (2015), 13–27 (In Russian) | Zbl

[2] Bykov Ya. V., O nekotorykh zadachakh teorii integro-differentsial'nykh uravnenii [On some problems in the theory of integrodifferential equations], Kirgiz. State Univ., Frunze, 1957, 327 pp. (In Russian)

[3] Vainberg M. M., “Integro-differential equations”, Itogi Nauki. Ser. Mat. Anal. Teor. Ver. Regulir. 1962, VINITI, Moscow, 1964, 5–37 (In Russian) | MR | Zbl

[4] Vasil'ev V. V., “On the solution of the Cauchy problem for a class of linear integro-differential equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1961, no. 4, 8–24 (In Russian) | MR | Zbl

[5] Vigranenko T. I., “A boundary value problem for linear integro-differential equations”, Zap. Leningrad. gornogo in-ta, 33:3 (1956), 176–186 (In Russian)

[6] Vlasov V. V., Perez Ortiz R., “Spectral analysis of integro-differential equations in viscoelasticity and thermal physics”, Math. Notes, 98:4 (2015), 689–693 | DOI | DOI | MR | Zbl

[7] Krivoshein L. E., “A method of solving certain linear integro-differential equations”, Izv. Vyssh. Uchebn. Zaved. Mat., 1960, no. 3, 168–172 (In Russian) | MR | Zbl

[8] Lando Yu. K., “A boundary-value problem for linear integro-differential equations of Volterra type in the case of disjoint boundary conditions”, Izv. Vyssh. Uchebn. Zaved. Mat., 1961, no. 3, 56–65 (In Russian) | MR | Zbl

[9] Shishkin G. A., “Justification of a method for solving integro-differential Fredholm equations with functional delay”, Korrektnye kraevye zadachi dlia neklassicheskikh uravnenii matematicheskoi fiziki [Correct boundary value problems for nonclassical equations of mathematical physics], Institute of Mathematics, Siberian Branch of the USSR Academy of Sciences, Novosibirsk, 1980, 172–178 (In Russian) | Zbl

[10] Falaleev M. V., “Integro-differential equations with Fredholm operator by the derivative of the higest order in Banach spaces and it's applications”, IIGU Ser. Matematika, 5:2 (2012), 90–102 (In Russian) | Zbl

[11] Gordeziani D. G., Avalishvili G. A., “On the constructing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations”, Matem. Mod., 12:1 (2000), 94–103 (In Russian) | MR | Zbl

[12] Tikhonov I. V., “Uniqueness theorems for linear non-local problems for abstract differential equations”, Izv. Math., 67:2 (2003), 333–363 | DOI | DOI | MR | Zbl

[13] Pul'kina L. S., “A nonlocal problem for a hyperbolic equation with integral conditions of the 1st kind with time-dependent kernels”, Russian Math. (Iz. VUZ), 56:10 (2012), 26–37 | DOI | MR | Zbl

[14] Sabitova Yu. K., “Boundary-value problem with nonlocal integral condition for mixed-type equations with degeneracy on the transition line”, Math. Notes, 98:3 (2015), 454–465 | DOI | DOI | MR | Zbl

[15] Tagiyev R. K., Gabibov V. M., “On optimal control problem for the heat equation with integral boundary condition”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 20:1 (2016), 54–64 (In Russian) | DOI | MR | Zbl

[16] Yuldashev T. K., “Inverse Problem for a Fredholm Third Order Partial Integro-differential Equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 1(34), 56–65 (In Russian) | DOI | Zbl

[17] Yuldashev T. K., “A double inverse problem for Fredholm integro-differential equation of elliptic type”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 2(35), 39–49 (In Russian) | DOI | Zbl

[18] Yuldashev T. K., “A certain Fredholm partial integro-differential equation of the third order”, Russian Math. (Iz. VUZ), 59:9 (2015), 62–66 | DOI | MR | Zbl

[19] Yuldashev T. K., “An inverse problem for a nonlinear Fredholm integro-differential equation of fourth order with degenerate kernel”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 736–749 (In Russian) | DOI

[20] Yuldashev T. K., “Inverse problem for a third order Fredholm integro-differential equation with degenerate kernel”, Vladikavkaz. Mat. Zh., 18:2 (2016), 76–85 (In Russian) | MR

[21] Trenogin V. A., Funktsional'nyi analiz [Functional analysis], Nauka, Moscow, 1980, 495 pp. (In Russian) | MR