Necessary optimality conditions of the second oder in~a~stochastic optimal control problem with delay argument
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 620-635.

Voir la notice de l'article provenant de la source Math-Net.Ru

The optimal control problem of nonlinear stochastic systems which mathematical model is given by Ito stochastic differential equation with delay argument is considered. Assuming that the concerned region is open for the control by the first and the second variation (classical sense) of the quality functional we obtain the necessary optimality condition of the first and the second order. In the particular case we receive the stochastic analog of the Legendre—Clebsch condition and some constructively verified conclusions from the second order necessary condition. We investigate theLegendre–Clebsch conditions for the degeneration case and obtain the necessary conditions of optimality for a special control, in the classical sense.
Keywords: stochastic control problem, admissible control, optimal control, first and second order variation of quality functional, a necessary condition for the stochastic analogue of the Euler equations, stochastic analog of the Legendre–Clebsch, singular control the classic sense.
@article{VSGTU_2016_20_4_a3,
     author = {R. O. Mastaliev},
     title = {Necessary optimality conditions of the second oder in~a~stochastic optimal control problem with delay argument},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {620--635},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a3/}
}
TY  - JOUR
AU  - R. O. Mastaliev
TI  - Necessary optimality conditions of the second oder in~a~stochastic optimal control problem with delay argument
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 620
EP  - 635
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a3/
LA  - ru
ID  - VSGTU_2016_20_4_a3
ER  - 
%0 Journal Article
%A R. O. Mastaliev
%T Necessary optimality conditions of the second oder in~a~stochastic optimal control problem with delay argument
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 620-635
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a3/
%G ru
%F VSGTU_2016_20_4_a3
R. O. Mastaliev. Necessary optimality conditions of the second oder in~a~stochastic optimal control problem with delay argument. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 620-635. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a3/

[1] Tsar'kov E. F., Sluchainye vozmushcheniia differentsial'no-funktsional'nykh uravnenii [Random Perturbations of Functional-Differential Equations], Zinatne, Riga, 1989, 421 pp. (In Russian)

[2] Zaytcev V. V., Karlov (Junior) A. V., Telegin S. S., “The discrete time “predator-prey” model”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2009, no. 6(72), 139–148 (In Russian)

[3] Kul'man N. K., Khametov V. M., “Optimum filtration for the case of indirect observation of a diffusion process with a delayed argument”, Problems Inform. Transmission, 14:3 (1978), 197–204 | MR | Zbl

[4] Butkovskiy A. G., “Distributed parameter control systems (survey)”, Autom. Remote Control, 40:11 (1980), 1568–1608 | MR | Zbl

[5] El'sgol'ts L. E., Norkin S. B., Introduction to the Theory and Application of Differential Equations with Deviating Arguments, v. 105, Mathematics in Science and Engineering, Academic Press, London, 1973, xiv+357 pp. | DOI | MR

[6] Kolmanovskii V. B., Nosov V. R., Stability of functional differential equations, Academic Press, London, 1986, xiv+217 pp. | MR | Zbl

[7] Kolmanovskii V. B., Myshkis A. D., Applied Theory of Functional Differential Equations, Mathematics and Its Applications (Soviet Series), 85, Springer, Netherlands, 1992, xv+234 pp. | DOI | MR

[8] Kolmanovskii V. B., Shaikhet L. E., Control of systems with aftereffect, Translations of mathematical monographs, 157, American Mathematical Society, Providence, RI, 1996, xi+336 pp. | MR | Zbl

[9] Mitropol'skii Yu. A., Nguyen Dong An', “Random oscillations in quasilinear systems of stochastic differential equations with delay”, Ukr. Math. J., 38:2 (1986), 159-164 | DOI | MR | MR | Zbl

[10] Gikhman I. I., Skorokhod A. V., Introduction to the theory of random processes, Dover Books on Mathematics, Mineola, New York, 1996, xiii+544 pp. | MR | MR

[11] Rybakov K. A., “Optimal Control of Stochastic Systems with Impulses Generated by Erlang Flow of Events”, Programmnye Sistemy: Teoriya i Prilozheniya, 4:2 (2013), 3–20 (In Russian)

[12] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsial'nye uravneniia i ikh prilozheniia [Stochastic Differential Equations and their Applications], Nauka dumka, Kiev, 1982, 612 pp. (In Russian) | MR

[13] Trigub M. V., “Design of controls for nonlinear stochastic systems”, Autom. Remote Control, 62:2 (2001), 260–268 | DOI | MR | Zbl

[14] Levakov A. A., Stokhasticheskie differentsial'nye uravneniia [Stochastic differential equations], Belarusian State Univ., Minsk, 2009, 231 pp. (In Russian)

[15] Agayeva C. A., Abushov Q. U., “The maximum principle for some nonlinear stochastic control system with variable structure”, Theory Stoch. Process., 16(32):1 (2010), 1–11 | MR | Zbl

[16] Aghayeva C. A., “Second order necessary condition of optimality for time lag stochastic systems”, 24th Mini EURO Conference on Continuous Optimization and Information-Based Technologies in the Financial Sector (MEC EurOPT 2010) (June 23–26, 2010, Izmir, Turkey), Vilnius Gediminas Technical University Publishing House “Technika”, Vilnius, 94–99 Retrieved from {(November 08, 2016)} http://leidykla.vgtu.lt/conferences/MEC_EurOPT_2010/003/0001.html

[17] Makhmudov N. I., Agaeva C. A., Necessary optimality conditions for stochastic control systems with a retarded argument, The VINITI Preprint; March 28, 1990, no. 2291–2390, 1990, 19 pp. (In Russian)

[18] Ajukasov R. A., “The synthesis algorithm of stochastic delay systems optimal control”, Mekhatronika, avtomatizatsiia, upravlenie, 2009, no. 5, 8–11 (In Russian)

[19] Gabasov R., Kirillova F., The qualitative theory of optimal processes, Control and Systems Theory, 3, Marcel Dekker, Inc., New York, Basel, 1976, xlvi+640 pp. | MR | MR | Zbl

[20] Mansimov K. B., Osobye upravleniia v sistemakh s zapazdyvaniem [Singular controls in systems with delay], Elm, Baku, 1999, 176 pp. (In Russian)

[21] Mardanov M. Dzh., Mansimov K. B., Melikov T. K., Issledovanie osobykh upravlenii i neobkhodimye usloviia optimal'nosti vtorogo poriadka v sistemakh s zapazdyvaniem [Investigation of singular controls and second order necessary optimality conditions in the systems with delays], Elm, Baku, 2013, 356 pp. (In Russian)

[22] Kharatishvili G. L., Tadumadze T. A., “Nonlinear optimal control systems with variable time lags”, Math. USSR-Sb., 35:6 (1979), 863–881 | DOI | MR | Zbl | Zbl

[23] Milyutkin V. P., “Maximum principle for problems with fixed time lag and trajectory free right end”, Avtomat. i Telemekh., 1968, no. 6, 37–45 (In Russian) | Zbl

[24] Gabasov R., Kirillova F. M., Printsip maksimuma v teorii optimal'nogo upravleniia [Maximum Principle in Optimal Control Theory], Nauka i tekhnika, Minsk, 1974, 274 pp. (In Russian) | MR

[25] Gabasov R., Kirillova F. M., Osobye optimal'nye upravleniia [Special optimal control], Nauka, Moscow, 1973, 256 pp. (In Russian)

[26] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimal Control, Contemporary Soviet Mathematics, Springer-Verlag, Berlin, 1987, xiii+309 pp. | DOI | MR

[27] Ioffe A. D., Tikhomirov V. M., Theory of Extremal Problems, Studies in Mathematics and its Applications, 9, North-Holland Publishing Company, New York, Oxford, 1979, xii+460 pp. | MR | Zbl

[28] Mordukhovich B. Sh., Metody approksimatsii v zadachakh optimizatsii i upravleniia [Approximation Methods in Optimization and Control Problems], Nauka, Moscow, 1988, 359 pp. (In Russian) | MR