Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_4_a2, author = {S. Yu. Lukashchuk}, title = {An approximate group classification of a perturbed subdiffusion equation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {603--619}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a2/} }
TY - JOUR AU - S. Yu. Lukashchuk TI - An approximate group classification of a perturbed subdiffusion equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 603 EP - 619 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a2/ LA - ru ID - VSGTU_2016_20_4_a2 ER -
%0 Journal Article %A S. Yu. Lukashchuk %T An approximate group classification of a perturbed subdiffusion equation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 603-619 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a2/ %G ru %F VSGTU_2016_20_4_a2
S. Yu. Lukashchuk. An approximate group classification of a perturbed subdiffusion equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 603-619. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a2/
[1] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Sci. Publ., Philadelphia, 1993, xxxvi+976 pp. | MR | Zbl | Zbl
[2] Kilbas A. A., Srivastava H. M., Trujillo Y. Y., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl
[3] Nakhushev A. M., Drobnoe ischislenie ego primenenie [Fractional calculus and its applications], Fizmatlit, Moscow, 2009, 272 pp. (In Russian)
[4] Uchaikin V. V., Metod drobnykh proizvodnykh [Method of Fractional Derivatives], Artishok, Ulyanovsk, 2008, 512 pp. (In Russian)
[5] Mainardy F., Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models, World Scientific, Singapore, 2010, xx+367 pp. | DOI | MR
[6] Goloviznin V. M., Kondratenko P. S., Matveev L. V., Korotkin I. A., Dranikov I. L., Anomal'naia diffuziia radionuklidov v sil'noneodnorodnykh geologicheskikh formatsiiakh [Anomalous Radionuclide Diffusion in Highly Heterogeneous Geological Formations], Nauka, Moscow, 2010, 342 pp. (In Russian)
[7] Tarasov V. E., Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, Nonlinear Physical Science, Springer, Heidelberg, 2011, xv+495 pp. | DOI | MR
[8] Baleanu D., Diethelm K., Scalas E., Trujillo J. J., Fractional calculus: Models and numerical methods, Series on Complexity, Nonlinearity and Chaos, 3, World Scientific, Singapore, 2012, 400 pp. | DOI | MR | Zbl
[9] Uchaikin V., Sibatov R., Fractional kinetics in solids: Anomalous charge transport in semiconductors, dielectrics and nanosystems, World Scientific, Singapore, 2013., 276 pp. | DOI
[10] Ovsiannikov L. V., Group Analysis of Differential Equations, Academic Press, New York, London, 1982, 416 pp. | DOI | MR | MR | Zbl | Zbl
[11] Ibragimov N. H., Transformation Groups Applied to Mathematical Physics, Mathematics and Its Applications (Soviet Series), 3, D. Reidel Publ. Company, Dordrecht, Boston, Lancaster, 1985, xv++394 pp. | DOI | MR | MR | Zbl | Zbl
[12] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Iu., “Continuous transformation groups of fractional differential equations”, Vestnik UGATU, 9:32(21) (2007), 125–135 (In Russian)
[13] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu., “Symmetry properties of fractional diffusion equations”, Physica Scripta, 2009:T136 (2009), 014016 | DOI
[14] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu., “Fractional differential equations: change of variables and nonlocal symmetries”, Ufa Mathematical Journal, 4:4 (2012), 54–67 | MR | Zbl
[15] Tarasov V. E., Zaslavsky G. M., “Dynamics with low-level fractionality”, Phys. A, 368:2 (2006), 399–415 | DOI
[16] Tofighi A., Golestani A., “A perturbative study of fractional relaxation phenomena”, Phys. A, 387:8–9 (2008), 1807–1817 | DOI
[17] Tofighi A., “An Especial Fractional Oscillator”, International Journal of Statistical Mechanics, 2013 (2013), 175273, 5 pp. | DOI
[18] Nayfeh A. H., Perturbation Methods, Willey, Mörlenbach, 2000, xii+495 pp. | DOI | MR | Zbl
[19] Baikov V. A., Gazizov R. K., Ibragimov N. Kh., “Approximate symmetries”, Math. USSR-Sb., 64:2 (1989), 427–441 | DOI | MR | Zbl
[20] Baikov V. A., Gazizov R. K., Ibragimov N. Kh., “Perturbation methods in group analysis”, J. Soviet Math., 55:1 (1991), 1450–1490 | DOI | MR | Zbl
[21] Baikov V. A., Gazizov R. K., Ibragimov N. H., “Approximate groups of transformations”, Differ. Equ., 29:10 (1993), 1487–1504 | MR | Zbl
[22] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Phys. Rep., 339:1 (2000), 1–77 | DOI | MR | Zbl
[23] Uchaikin V. V., “Self-similar anomalous diffusion and Levy-stable laws”, Phys. Usp., 46:8 (2003), 821–849 | DOI | DOI
[24] Pskhu A. V., Uravneniia v chastnykh proizvodnykh drobnogo poriadka [Partial differential equations of fractional order], Nauka, Moscow, 2005, 199 pp. (In Russian) | MR
[25] Luchko Yu., “Anomalous diffusion: models, their analysis, and interpretation”, Advances in Applied Analysis. Trends in Mathematics, eds. S. Rogosin, A. Koroleva, Birkhäuser, Basel, 2012, 115–145 | DOI | MR | Zbl
[26] Khushtova F. G., “Fundamental solution of the model equation of anomalous diffusion of fractional order”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 722–735 (In Russian) | DOI
[27] Bologna M., Tsallis C., Grigolini P., “Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions”, Phys. Rev. E, 62:2 (2000), 2213–2218 | DOI
[28] Lenzi E. K., Lenzi M. K., Evangelista L. R., Malacarne L. C., Mendes R. S., “Solutions for a fractional nonlinear diffusion equation with external force and absorbent term”, Journal of Statistical Mechanics: Theory and Experiment, 2009:2 (2009), P02048 | DOI
[29] Bonforte M., Vázquez J. L., “Fractional nonlinear degenerate diffusion equations on bounded domains part I. Existence, uniqueness and upper bounds”, Nonlinear Analysis: Theory, Methods Applications, 131 (2016), 363–398 | DOI | MR | Zbl
[30] Lukashchuk S. Yu., Makunin A. V., “Group classification of nonlinear time-fractional diffusion equation with a source term”, Applied Mathematics and Computation, 257 (2015), 335–343 | DOI | MR | Zbl
[31] Handbook of mathematical functions with formulas, graphs, and mathematical tables, eds. Milton Abramowitz, Irene A. Stegun, John Wiley Sons, Inc, New York, 1984, xiv+1046 pp. | MR | Zbl