An approximate group classification of a perturbed subdiffusion equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 603-619.

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem of the Lie point approximate symmetry group classification of a perturbed subdiffusion equation with a small parameter is solved. The classification is performed with respect to anomalous diffusion coefficient which is considered as a function of an independent variable. The perturbed subdiffusion equation is derived from a fractional subdiffusion equation with the Riemann-Liouville time-fractional derivative under an assumption that the order of fractional differentiation is close to unity. As it is follow from the classification results, the perturbed subdiffusion equation admits a more general Lie point symmetry group than the initial fractional subdiffusion equation. The obtained results permit to construct approximate invariant solutions for the perturbed subdiffusion equation corresponding to different functions of the anomalous diffusion coefficient. These solutions will also be the approximate solutions of the initial fractional subdiffusion equation.
Keywords: fractional differential equation, small parameter, approximate transformation group
Mots-clés : subdiffusion, group classification.
@article{VSGTU_2016_20_4_a2,
     author = {S. Yu. Lukashchuk},
     title = {An approximate group classification of a perturbed subdiffusion equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {603--619},
     publisher = {mathdoc},
     volume = {20},
     number = {4},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a2/}
}
TY  - JOUR
AU  - S. Yu. Lukashchuk
TI  - An approximate group classification of a perturbed subdiffusion equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 603
EP  - 619
VL  - 20
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a2/
LA  - ru
ID  - VSGTU_2016_20_4_a2
ER  - 
%0 Journal Article
%A S. Yu. Lukashchuk
%T An approximate group classification of a perturbed subdiffusion equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 603-619
%V 20
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a2/
%G ru
%F VSGTU_2016_20_4_a2
S. Yu. Lukashchuk. An approximate group classification of a perturbed subdiffusion equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 603-619. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a2/

[1] Samko S. G., Kilbas A. A., Marichev O. I., Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Sci. Publ., Philadelphia, 1993, xxxvi+976 pp. | MR | Zbl | Zbl

[2] Kilbas A. A., Srivastava H. M., Trujillo Y. Y., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, ed. J. van Mill, Elsevier, Amsterdam, 2006, 523 pp. | MR | Zbl

[3] Nakhushev A. M., Drobnoe ischislenie ego primenenie [Fractional calculus and its applications], Fizmatlit, Moscow, 2009, 272 pp. (In Russian)

[4] Uchaikin V. V., Metod drobnykh proizvodnykh [Method of Fractional Derivatives], Artishok, Ulyanovsk, 2008, 512 pp. (In Russian)

[5] Mainardy F., Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models, World Scientific, Singapore, 2010, xx+367 pp. | DOI | MR

[6] Goloviznin V. M., Kondratenko P. S., Matveev L. V., Korotkin I. A., Dranikov I. L., Anomal'naia diffuziia radionuklidov v sil'noneodnorodnykh geologicheskikh formatsiiakh [Anomalous Radionuclide Diffusion in Highly Heterogeneous Geological Formations], Nauka, Moscow, 2010, 342 pp. (In Russian)

[7] Tarasov V. E., Fractional dynamics: Application of fractional calculus to dynamics of particles, fields and media, Nonlinear Physical Science, Springer, Heidelberg, 2011, xv+495 pp. | DOI | MR

[8] Baleanu D., Diethelm K., Scalas E., Trujillo J. J., Fractional calculus: Models and numerical methods, Series on Complexity, Nonlinearity and Chaos, 3, World Scientific, Singapore, 2012, 400 pp. | DOI | MR | Zbl

[9] Uchaikin V., Sibatov R., Fractional kinetics in solids: Anomalous charge transport in semiconductors, dielectrics and nanosystems, World Scientific, Singapore, 2013., 276 pp. | DOI

[10] Ovsiannikov L. V., Group Analysis of Differential Equations, Academic Press, New York, London, 1982, 416 pp. | DOI | MR | MR | Zbl | Zbl

[11] Ibragimov N. H., Transformation Groups Applied to Mathematical Physics, Mathematics and Its Applications (Soviet Series), 3, D. Reidel Publ. Company, Dordrecht, Boston, Lancaster, 1985, xv++394 pp. | DOI | MR | MR | Zbl | Zbl

[12] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Iu., “Continuous transformation groups of fractional differential equations”, Vestnik UGATU, 9:32(21) (2007), 125–135 (In Russian)

[13] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu., “Symmetry properties of fractional diffusion equations”, Physica Scripta, 2009:T136 (2009), 014016 | DOI

[14] Gazizov R. K., Kasatkin A. A., Lukashchuk S. Yu., “Fractional differential equations: change of variables and nonlocal symmetries”, Ufa Mathematical Journal, 4:4 (2012), 54–67 | MR | Zbl

[15] Tarasov V. E., Zaslavsky G. M., “Dynamics with low-level fractionality”, Phys. A, 368:2 (2006), 399–415 | DOI

[16] Tofighi A., Golestani A., “A perturbative study of fractional relaxation phenomena”, Phys. A, 387:8–9 (2008), 1807–1817 | DOI

[17] Tofighi A., “An Especial Fractional Oscillator”, International Journal of Statistical Mechanics, 2013 (2013), 175273, 5 pp. | DOI

[18] Nayfeh A. H., Perturbation Methods, Willey, Mörlenbach, 2000, xii+495 pp. | DOI | MR | Zbl

[19] Baikov V. A., Gazizov R. K., Ibragimov N. Kh., “Approximate symmetries”, Math. USSR-Sb., 64:2 (1989), 427–441 | DOI | MR | Zbl

[20] Baikov V. A., Gazizov R. K., Ibragimov N. Kh., “Perturbation methods in group analysis”, J. Soviet Math., 55:1 (1991), 1450–1490 | DOI | MR | Zbl

[21] Baikov V. A., Gazizov R. K., Ibragimov N. H., “Approximate groups of transformations”, Differ. Equ., 29:10 (1993), 1487–1504 | MR | Zbl

[22] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Phys. Rep., 339:1 (2000), 1–77 | DOI | MR | Zbl

[23] Uchaikin V. V., “Self-similar anomalous diffusion and Levy-stable laws”, Phys. Usp., 46:8 (2003), 821–849 | DOI | DOI

[24] Pskhu A. V., Uravneniia v chastnykh proizvodnykh drobnogo poriadka [Partial differential equations of fractional order], Nauka, Moscow, 2005, 199 pp. (In Russian) | MR

[25] Luchko Yu., “Anomalous diffusion: models, their analysis, and interpretation”, Advances in Applied Analysis. Trends in Mathematics, eds. S. Rogosin, A. Koroleva, Birkhäuser, Basel, 2012, 115–145 | DOI | MR | Zbl

[26] Khushtova F. G., “Fundamental solution of the model equation of anomalous diffusion of fractional order”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 722–735 (In Russian) | DOI

[27] Bologna M., Tsallis C., Grigolini P., “Anomalous diffusion associated with nonlinear fractional derivative Fokker-Planck-like equation: Exact time-dependent solutions”, Phys. Rev. E, 62:2 (2000), 2213–2218 | DOI

[28] Lenzi E. K., Lenzi M. K., Evangelista L. R., Malacarne L. C., Mendes R. S., “Solutions for a fractional nonlinear diffusion equation with external force and absorbent term”, Journal of Statistical Mechanics: Theory and Experiment, 2009:2 (2009), P02048 | DOI

[29] Bonforte M., Vázquez J. L., “Fractional nonlinear degenerate diffusion equations on bounded domains part I. Existence, uniqueness and upper bounds”, Nonlinear Analysis: Theory, Methods Applications, 131 (2016), 363–398 | DOI | MR | Zbl

[30] Lukashchuk S. Yu., Makunin A. V., “Group classification of nonlinear time-fractional diffusion equation with a source term”, Applied Mathematics and Computation, 257 (2015), 335–343 | DOI | MR | Zbl

[31] Handbook of mathematical functions with formulas, graphs, and mathematical tables, eds. Milton Abramowitz, Irene A. Stegun, John Wiley Sons, Inc, New York, 1984, xiv+1046 pp. | MR | Zbl