Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_4_a1, author = {N. V. Zaitseva}, title = {The nonlocal problem for a~hyperbolic equation with {Bessel} operator in~a~rectangular domain}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {589--602}, publisher = {mathdoc}, volume = {20}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a1/} }
TY - JOUR AU - N. V. Zaitseva TI - The nonlocal problem for a~hyperbolic equation with Bessel operator in~a~rectangular domain JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 589 EP - 602 VL - 20 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a1/ LA - ru ID - VSGTU_2016_20_4_a1 ER -
%0 Journal Article %A N. V. Zaitseva %T The nonlocal problem for a~hyperbolic equation with Bessel operator in~a~rectangular domain %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 589-602 %V 20 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a1/ %G ru %F VSGTU_2016_20_4_a1
N. V. Zaitseva. The nonlocal problem for a~hyperbolic equation with Bessel operator in~a~rectangular domain. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 4, pp. 589-602. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_4_a1/
[1] Kipriyanov I. A., Singuliarnye ellipticheskie kraevye zadachi [Singular elliptic boundary value problems], Fizmatlit, Moscow, 1997, 208 pp. (In Russian)
[2] Pul'kin S. P., Izbrannye trudy [Selected works], Univers grupp, Samara, 2007, 264 pp. (In Russian)
[3] Pulkin S. P., “O edinstvennosti resheniya singulyarnoi zadachi Gellerstedta”, Izv. vuzov. Matem., 1960, no. 6, 214–225 | MR | Zbl
[4] Sabitov K. B., Il'yasov R. R., “On the ill-posedness of boundary value problems for a class of hyperbolic equations”, Russian Math. (Iz. VUZ), 45:5 (2001), 56–60 | MR | Zbl
[5] Sabitov K. B., Il'yasov R. R., “Solution of the Tricomi problem for an equation of mixed type with a singular coefficient by means of the spectral method”, Russian Math. (Iz. VUZ), 48:2 (2004), 61–68 | MR | Zbl
[6] Cannon J. R., “The solution of heat equation subject to the specification of energy”, Quart. Appl. Math, 21:2 (1963), 155–160 | DOI
[7] Kamynin L. I., “A boundary value problem in the theory of heat conduction with a nonclassical boundary condition”, U.S.S.R. Comput. Math. Math. Phys., 4:6 (1964), 33–59 | DOI | MR | Zbl
[8] Ionkin N. I., “The solution of a certain boundary value problem of the theory of heat conduction with a nonclassical boundary condition”, Differ. Uravn., 13:2 (1977), 294–304 (In Russian) | MR | Zbl
[9] Pul'kina L. S., “A Nonlocal Problem with Integral Conditions for a Hyperbolic Equation”, Differ. Equ., 40:7 (2004), 947–953 | DOI | MR | Zbl
[10] Pul'kina L. S., “Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Math. (Iz. VUZ), 56:4 (2012), 62–69 | DOI | MR | Zbl
[11] Pul'kina L. S., Zadachi s neklassicheskimi usloviiami dlia giperbolicheskikh uravnenii [Problems with Nonclassical Conditions for Hyperbolic Equations], Samara Univ., Samara, 2012, 194 pp. (In Russian)
[12] Benuar Nur-Eddin, Yurchuk N. I., “A mixed problem with integral condition for parabolic equations with a Bessel operator”, Differ. Equ., 27:12 (1991), 1482–1487 | MR | Zbl | Zbl
[13] Beilin S. A., “Existence of solutions for one-dimensional wave equations with nonlocal conditions”, Electronic Journal of Differential Equations, 2001:76 (2001), 1–8 http://ejde.math.txstate.edu/Volumes/2001/76/abstr.html
[14] Mesloub S., Bouziani A., Kechkar N., “A strong solution of an envolution problem with integral condition”, Georgian Mathematical Journal, 9:1 (2002), 149–159 | DOI | Zbl
[15] Sabitova Yu. K., “Nonlocal initial-boundary-value problems for a degenerate hyperbolic equation”, Russian Math. (Iz. VUZ), 53:12 (2009), 41–49 | DOI | MR | Zbl
[16] Sabitov K. B., “Boundary value problem for a parabolic-hyperbolic equation with a nonlocal integral condition”, Differ. Equ., 46:10 (2010), 1472–1481 | DOI | Zbl
[17] Sabitov K. B., “Nonlocal problem for a parabolic-hyperbolic equation in a rectangular domain”, Math. Notes, 89:4 (2011), 562–567 | DOI | DOI | MR | Zbl
[18] Sabitova Yu. K., “Boundary-value problem with nonlocal integral condition for mixed-type equations with degeneracy on the transition line”, Math. Notes, 98:3 (2015), 454–465 | DOI | DOI | MR | Zbl
[19] Sabitov K. B., Uravneniia matematicheskoi fiziki [Equations of mathematical physics], Fizmatlit, Moscow, 2013, 352 pp. (In Russian)
[20] Zaitseva N. V., “Keldysh type problem for $B$-hyperbolic equation with integral boundary value condition of the first kind”, Lobachevskii J. Math., 38:1 (2017) (to appear) | DOI | Zbl
[21] Olver F. W.J., Asymptotics and special functions. Reprint, A K Peters, Wellesley, MA, 1997, xviii+572 pp. | Zbl
[22] Sabitov K. B., Vagapova E. V., “Dirichlet problem for an equation of mixed type with two degeneration lines in a rectangular domain”, Differ. Equ., 49:1 (2013), 68–78 | DOI | Zbl
[23] Safina R. M., “Keldysh problem for a mixed-type equation of the second kind with the Bessel operator”, Differ. Equ., 51:10 (2015), 1347–1359 | DOI | Zbl