Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_3_a9, author = {S. A. Bochkarev and S. V. Lekomtsev}, title = {Aeroelastic stability of plate interacting with a flowing fluid}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {552--566}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a9/} }
TY - JOUR AU - S. A. Bochkarev AU - S. V. Lekomtsev TI - Aeroelastic stability of plate interacting with a flowing fluid JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 552 EP - 566 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a9/ LA - ru ID - VSGTU_2016_20_3_a9 ER -
%0 Journal Article %A S. A. Bochkarev %A S. V. Lekomtsev %T Aeroelastic stability of plate interacting with a flowing fluid %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 552-566 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a9/ %G ru %F VSGTU_2016_20_3_a9
S. A. Bochkarev; S. V. Lekomtsev. Aeroelastic stability of plate interacting with a flowing fluid. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 3, pp. 552-566. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a9/
[1] Dowell E. H., Aeroelasticity of Plates and Shells, Mechanics: Dynamical Systems, 1, Springer, Netherlands, 1975, xiii+139 pp.
[2] Ilyushin A. A., “The law of plane sections in aerodynamics of the high supersonic velocities”, Prikl. Mat. Mekh, 20:6 (1956), 733–755 (In Russian)
[3] Novichkov Yu. N., “Flutter of plates and shells”, Itogi nauki i tekhniki [Advances in Science and Technology], Mechanics of Deformable Solids, 11, VINITI, Moscow, 1978, 67–122 (In Russian) | MR
[4] Dowell E. H., Voss H. M., “Theoretical and experimental panel flutter studies in the Mach number range 1.0 to 5.0”, AIAA J., 3:12 (1965), 2292–2304 | DOI
[5] Dixon S. C., Comparison of panel flutter results from approximate aerodynamic theory with results from exact inviscid theory and experiment, NASA TN D-3649; Technical Report no. 19660029122, 1966 https://ntrs.nasa.gov/search.jsp?R=19660029122
[6] Vedeneev V. V., Guvernyuk S. V., Zubkov A. F., Kolotnikov M. E., “Experimental investigation of single-mode panel flutter in supersonic gas flow”, Fluid Dyn., 45:2 (2010), 312–324 | DOI | MR
[7] Bismarck-Nasr M. N., “Finite element analysis of aeroelasticity of plates and shells”, Appl. Mech. Rev., 45:12 (1992), 461–482 | DOI
[8] Païdoussis M. P., Fluid-structure Interactions: Slender Structures and Axial Flow, 2nd edition, v. 2, Academic Press, London, 2014, 923 pp. | DOI
[9] Kornecki A., Dowell E. H., O'Brien J., “On the aeroelastic instability of two-dimensional panels in uniform incompressible flow”, Journal of Sound and Vibration, 47:2 (1976), 163–178 | DOI | Zbl
[10] Dowell E. H., “Nonlinear oscillations of a fluttering plate”, AIAA J., 4:7 (1966), 1267–1275 | DOI
[11] Dowell E. H., “Nonlinear oscillations of a fluttering plate. II”, AIAA J., 5:10 (1967), 1856–1862 | DOI
[12] Mei C., “A finite-element approach for nonlinear panel flutter”, AIAA J., 15:8 (1977), 1107–1110 | DOI
[13] Yang T. Y., Han A. D., “Nonlinear panel flutter using high-order triangular finite elements”, AIAA J., 21:10 (1983), 1453–1461 | DOI | Zbl
[14] Haddadpour H., Navazi H. M., Shadmehri F., “Nonlinear oscillations of a fluttering functionally graded plate”, Compos. Struct., 79:2 (2007), 242–250 | DOI
[15] Prakash T., Ganapathi M., “Supersonic flutter characteristics of functionally graded flat panels including thermal effects”, Compos. Struct., 72:1 (2006), 10–18 | DOI
[16] Rossettos J. N., Tong P., “Finite-element analysis of vibration and flutter of cantilever anisotropic plates”, J. Appl. Mech., 41:4 (1974), 1075–1080 | DOI | Zbl
[17] Bochkarev S. A., Lekomtsev S. V., Matveenko V. P., “Hydroelastic stability of rectangular plate interacting with a layer of ideal flowing fluid”, Fluid Dyn., 51:6 (2016) | DOI | Zbl
[18] Bochkarev S. A., Lekomtsev S. V., “Numerical investigation of the effect of boundary conditions on hydroelastic stability of two parallel plates interacting with a layer of ideal flowing fluid”, Comput. Continuum Mech., 8:4 (2015), 423–432 (In Russian) | DOI
[19] Kerboua Y., Lakis A. A., Thomas M., Marcouiller L., “Modeling of plates subjected to a flowing fluid under various boundary conditions”, Eng. Appl. Comp. Fluid Mech., 2:4 (2008), 525–539 | DOI
[20] Noorian M., Haddadpour H., Firouz-Abadi R., “Investigation of panel flutter under the effect of liquid sloshing”, J. Aerosp. Eng., 28:2 (2015), 04014059 | DOI
[21] Bochkarev S. A., Lekomtsev S. V., “An aeroelastic stability of the circular cylindrical shells containing a flowing fluid”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 750–767 (In Russian) | DOI
[22] Vol'mir A. S., Nelineinaia dinamika plastin i obolochek [Nonlinear Dynamics of Plates and Shells], Nauka, Moscow, 1972, 432 pp. (In Russian) | MR
[23] Vol'mir A. S., Obolochki v potoke zhidkosti i gaza. Zadachi gidrouprugosti [Shells in Fluid and Gas Flow. Problems of Hydroelasticity], Nauka, Moscow, 1979, 320 pp. (In Russian)
[24] Lehoucq R. B., Sorensen D. C., “Deflation techniques for an implicitly restarted Arnoldi iteration”, SIAM J. Matrix Anal. Appl., 17:4 (1996), 789–821 | DOI | MR | Zbl
[25] Olson M. D., “Some flutter solutions using finite elements”, AIAA J., 8:4 (1970), 747–752 | DOI | MR