Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_3_a7, author = {A. V. Khokhlov}, title = {Long-term strength curves generated by the nonlinear {Maxwell-type} model}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {524--543}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a7/} }
TY - JOUR AU - A. V. Khokhlov TI - Long-term strength curves generated by the nonlinear Maxwell-type model JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 524 EP - 543 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a7/ LA - ru ID - VSGTU_2016_20_3_a7 ER -
%0 Journal Article %A A. V. Khokhlov %T Long-term strength curves generated by the nonlinear Maxwell-type model %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 524-543 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a7/ %G ru %F VSGTU_2016_20_3_a7
A. V. Khokhlov. Long-term strength curves generated by the nonlinear Maxwell-type model. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 3, pp. 524-543. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a7/
[1] Kachanov L. M., Teoriia polzuchesti [Creep theory], Fizmatgiz, Moscow, 1960, 456 pp. (In Russian)
[2] Rabotnov Yu. N., Creep problems in structural members, North-Holland Publ. Co., Amsterdam, London, 1969, xiv+822 pp. | Zbl
[3] Lokoshchenko A. M., Polzuchest' i dlitel'naia prochnost' metallov [Creep and Long-Term Strength of Metals], Fizmatlit, Moscow, 2016, 504 pp. (In Russian)
[4] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [Rheological deformation and fracture of materials and structural elements], Mashinostroenie-1, Moscow, 2004, 265 pp. (In Russian)
[5] Betten J., Creep Mechanics, Springer-Verlag, Berlin, Heidelberg, 2008, 367 pp.
[6] Bergstrom J. S., Mechanics of Solid Polymers. Theory and Computational Modeling, William Andrew is an imprint of Elsevier, Amsterdam, 2015, 520 pp.
[7] Makhutov N. A., Deformatsionnye kriterii razrusheniia i raschet elementov konstruktsii na prochnost' [Deformation and fracture criteria for the calculation of structural elements of strength], Mashinostroenie, Moscow, 1981, 272 pp. (In Russian)
[8] Khokhlov A. V., “Constitutive relation for rheological processes: Properties of theoretic creep curves and simulation of memory decay”, Mech. Solids, 42:2 (2007), 291–306 | DOI
[9] Khokhlov A. V., “Constitutive relation for rheological processes with known loading history. Creep and long-term strength curves”, Mech. Solids, 43:2 (2008), 283–299 | DOI | MR
[10] “Fracture criteria under creep with strain history taken into account, and long-term strength modelling”, Mech. Solids, 44:4 (2009), 596–607 | DOI
[11] Khokhlov A. V., The general properties of curves and creep rupture strength generated by the nonlinear theory of heredity by Yu. N. Rabotnov, Research report no. 5288, Lomonosov Moscow State University, Institute of Mechanics, Moscow, 2015, 74 pp. (In Russian)
[12] Khokhlov A. V., “Properties of nonlinear Maxwell-type models of the visco material with two functions”, Vestnik MGU. Ser. 1. Matematika, mekhanika, 2016, no. 6, 36–41 pp. (In Russian)
[13] Lokoshchenko A. M., Shesterikov S. A., “Problem of estimating the creep strength under step loading”, J. Appl. Mech. Tech. Phys., 23:2 (1982), 289–292 | DOI
[14] Radchenko V. P., Kichaev P. E., Energeticheskaia kontseptsiia polzuchesti i vibropolzuchesti metallov [Energy Concept of Creep and Vibrocreep of Metals], Samara State Technical Univ., Samara, 2011, 157 pp. (In Russian)
[15] Nikitenko A. F., Sosnin O. V., “Fracture in creep”, J. Appl. Mech. Tech. Phys., 8:3 (1967), 50–51 | DOI
[16] Sosnin O. V., Gorev B. V., Nikitenko A. F., Energeticheskii variant teorii polzuchesti [Energetic variant of the creep theory], Inst. of Hydrodynamics, USSR Acad. of Sci., Novosibirsk, 1986, 95 pp. (In Russian)
[17] Nikitenko A. F., Polzuchest' i dlitel'naia prochnost' metallicheskikh materialov [Creep and long-term strength of metallic materials], Novosibirsk State University of architecture and Civil Engineering Publ., Novosibirsk, 1997, 278 pp. (In Russian)
[18] Sosnin O. V., Nikitenko A. F., Gorev B. V., “Justification of the energy variant of the theory of creep and long-term strength of metals”, J. Appl. Mech. Tech. Phys., 51:4 (2010), 608–614 | DOI | Zbl
[19] Fedorov V. V., “Thermodynamic method of estimating long-term strength”, Strength Mater., 4:9 (1972), 1076–1079 | DOI
[20] Radchenko V. P., “Energy variant of the uniaxial theory of creep and rupture strength”, J. Appl. Mech. Tech. Phys., 32:4 (1991), 632–640 | DOI | MR
[21] Radchenko V. P., Kichaev E. K., Simonov A. V., “Energetic variant of the model of rheological deformation and destruction of metals under a joint action of static and cyclic loads”, J. Appl. Mech. Tech. Phys., 41:3 (2000), 531–537 | DOI | MR | Zbl
[22] Khokhlov A. V., “Nonlinear Maxwell-type model of viscoelastoplasticity: the properties of creep curves at step loadings and conditions for the accumulation of plastic deformation”, Mashinostroenie i inzhenernoe obrazovanie, 2016, no. 3, 35–48 (In Russian)
[23] Khokhlov A. V., Nonlinear Maxwell-type models of viscoelasticity. Features of their behavior, rate sensitivity, and the possibility of using to describe the creep and superplastic materials, Research report no. 5193, Lomonosov Moscow State University, Institute of Mechanics, Moscow, 2013, 108 pp. (In Russian)
[24] Gorodtsov V. A., Leonov A. I., “On the kinematics, nonequilibrium thermodynamics, and rheological relationships in the nonlinear theory of viscoelasticity”, J. Appl. Math. Mech., 32:1 (1968), 62–84 | DOI | MR | Zbl
[25] Leonov A. I., Lipkina E. Ch., Paskhin E. D., Prokunin A. N., “Theoretical and experimental investigations of shearing in elastic polymer liquids”, Rheol. Acta, 15:7/8 (1976), 411–426 | DOI | Zbl
[26] Pal'mov V. A., “Rheological models in the nonlinear mechanics of deformable bodies”, Uspekhi mekhaniki, 3:3 (1980), 75–115 (In Russian) | MR
[27] Prokunin A. N., “On the non-linear Maxwell-type defining equations for describing the motions of polymer liquids”, J. Appl. Math. Mech., 48:6 (1984), 699–706 | DOI | MR | Zbl
[28] Leonov A. I., Prokunin A. N., Non-linear Phenomena in Flows of Viscoelastic Polymer Fluids, Chapman and Hall, London, 1994, xvii+475 pp | DOI
[29] Leonov A. I., “Constitutive equations for viscoelastic liquids: Formulation, analysis and comparison with data”, Rheology Series, 8 (1999), 519–575 | DOI
[30] Cao Y., “Determination of the creep exponent of a power-law creep solid using indentation tests”, Mech. Time-Depend. Mater, 11:2 (2007), 159–172 | DOI
[31] Naumenko K., Altenbach H., Gorash Y., “Creep Analysis with a Stress Range Dependent Constitutive Model”, Arch. Appl. Mech., 79:6 (2009), 619–630 | DOI | Zbl
[32] Radchenko V. P., Shapievskii D. V., “Analysis of a nonlinear generalized Maxwell model”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2005, no. 38, 55–64 (In Russian) | DOI