Dual plane problems for creeping flow of power-law incompressible medium
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 3, pp. 496-507.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the class of solutions for a creeping plane flow of incompressible medium with power-law rheology, which are written in the form of the product of arbitrary power of the radial coordinate by arbitrary function of the angular coordinate of the polar coordinate system covering the plane. This class of solutions represents the asymptotics of fields in the vicinity of singular points in the domain occupied by the examined medium. We have ascertained the duality of two problems for a plane with wedge-shaped notch, at which boundaries in one of the problems the vector components of the surface force vanish, while in the other—the vanishing components are the vector components of velocity, We have investigated the asymptotics and eigensolutions of the dual nonlinear eigenvalue problems in relation to the rheological exponent and opening angle of the notch for the branch associated with the eigenvalue of the Hutchinson–Rice–Rosengren problem learned from the problem of stress distribution over a notched plane for a power law medium. In the context of the dual problem we have determined the velocity distribution in the flow of power-law medium at the vertex of a rigid wedge, We have also found another two eigenvalues, one of which was determined by V. V. Sokolovsky for the problem of power-law fluid flow in a convergent channel.
Keywords: steady-state creep, power-law rheology, duality, variable separation, crack mechanics, flow in convergent channel.
@article{VSGTU_2016_20_3_a5,
     author = {D. S. Petukhov and I. E. Keller},
     title = {Dual plane problems for creeping flow of power-law incompressible medium},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {496--507},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a5/}
}
TY  - JOUR
AU  - D. S. Petukhov
AU  - I. E. Keller
TI  - Dual plane problems for creeping flow of power-law incompressible medium
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 496
EP  - 507
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a5/
LA  - ru
ID  - VSGTU_2016_20_3_a5
ER  - 
%0 Journal Article
%A D. S. Petukhov
%A I. E. Keller
%T Dual plane problems for creeping flow of power-law incompressible medium
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 496-507
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a5/
%G ru
%F VSGTU_2016_20_3_a5
D. S. Petukhov; I. E. Keller. Dual plane problems for creeping flow of power-law incompressible medium. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 3, pp. 496-507. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a5/

[1] Sokolovsky V. V., “Plane and axisymmetric equilibrium of plastic mass between rigid walls”, Prikl. Mat. Mekh., 14:1 (1950), 75–92 (In Russian) | Zbl

[2] Sokolovsky V. V., Teoriia plastichnosti [Theory of Plasticity], Vysshaya Shkola Publ., Moscow, 1969, 608 pp. (In Russian)

[3] Malinin N. N., Tekhnologicheskie zadachi plastichnosti i polzuchesti [Technological problems of plasticity and creep], Vysshaya Shkola Publ., Moscow, 1979, 119 pp. (In Russian)

[4] Rice J. R., Rosengren G. F., “Plane strain deformation near a crack tip in a power-law hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 1–12 | DOI | Zbl

[5] Hutchinson J. W., “Singular behaviour at the end of a tensile crack in a hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 13–31 | DOI | Zbl

[6] Hutchinson J. W., “Plastic stress and strain fields at a crack tip”, J. Mech. Phys. Solids, 16:5 (1968), 337–342 | DOI

[7] Freudental A. M., Geiringer H., “The Mathematical Theories of the Inelastic Continuum”, Handbuch der Physik, Bd. 6, Elasizitaet und Plastizitaet, ed. S. Flugge, Springer-Verlag, Berlin, Goettingen, Heidelberg, 1958, 229–433 | DOI

[8] Ovsyannikov L. V., Gruppovoi analiz differentsial'nykh uravnenii [Group analysis of differential equations], Nauka, Moscow, 1978, 399 pp. (In Russian)

[9] Golovin S. V., Chesnokov A. A., Gruppovoi analiz differentsial'nykh uravnenii [Group analysis of differential equations], Novosibirsk State Univ., Novosibirsk, 2008, 113 pp. (In Russian)

[10] Bluman G. W., Cheviakov A. F., Anco S. C., Applications of symmetry methods to partial differential equations, Applied Mathematical Sciences, 168, Springer-Verlag, Berlin, Heidelberg, 2010, 414 pp. | DOI | Zbl

[11] Shih C. F., Elastic-plastic analysis of combined mode crack problems, Ph. D. Thesis, Harvard University, Cambridge, M.A., 1973

[12] Shlyannikov V. N., Elastic-plastic mixed-mode fracture criteria and parameters, Lecture Notes in Applied and Computational Mechanics, 7, Springer-Verlag, Berlin, Heidelberg, 2003, 234 pp. | DOI | Zbl

[13] Astaf'ev V. I., Krutov A. N., “Stress distribution near the tip of an inclined crack in the nonlinear fracture mechanics”, Mech. Solids, 36:5 (2001), 101–108

[14] Stepanova L. V., Yakovleva E. M., “Mixed-mode loading of the structural elements with defect”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 358–381 (In Russian) | DOI | Zbl

[15] Duchin V. R., “Invariant solution of motion equations for “power-law” fluids”, Vestn. Mosk. Univ., Ser. I. Matematika. Mekhanika, 1988, no. 2, 91–95 (In Russian) | Zbl

[16] Keller I. E., “Integrability of the Equilibrium and Compatibility Equations for a Viscoplastic Medium with Negative Strain Rate Sensitivity”, Dokl. Phys., 58:8 (2013), 643–646 | DOI