Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_3_a5, author = {D. S. Petukhov and I. E. Keller}, title = {Dual plane problems for creeping flow of power-law incompressible medium}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {496--507}, publisher = {mathdoc}, volume = {20}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a5/} }
TY - JOUR AU - D. S. Petukhov AU - I. E. Keller TI - Dual plane problems for creeping flow of power-law incompressible medium JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 496 EP - 507 VL - 20 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a5/ LA - ru ID - VSGTU_2016_20_3_a5 ER -
%0 Journal Article %A D. S. Petukhov %A I. E. Keller %T Dual plane problems for creeping flow of power-law incompressible medium %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 496-507 %V 20 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a5/ %G ru %F VSGTU_2016_20_3_a5
D. S. Petukhov; I. E. Keller. Dual plane problems for creeping flow of power-law incompressible medium. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 3, pp. 496-507. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a5/
[1] Sokolovsky V. V., “Plane and axisymmetric equilibrium of plastic mass between rigid walls”, Prikl. Mat. Mekh., 14:1 (1950), 75–92 (In Russian) | Zbl
[2] Sokolovsky V. V., Teoriia plastichnosti [Theory of Plasticity], Vysshaya Shkola Publ., Moscow, 1969, 608 pp. (In Russian)
[3] Malinin N. N., Tekhnologicheskie zadachi plastichnosti i polzuchesti [Technological problems of plasticity and creep], Vysshaya Shkola Publ., Moscow, 1979, 119 pp. (In Russian)
[4] Rice J. R., Rosengren G. F., “Plane strain deformation near a crack tip in a power-law hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 1–12 | DOI | Zbl
[5] Hutchinson J. W., “Singular behaviour at the end of a tensile crack in a hardening material”, J. Mech. Phys. Solids, 16:1 (1968), 13–31 | DOI | Zbl
[6] Hutchinson J. W., “Plastic stress and strain fields at a crack tip”, J. Mech. Phys. Solids, 16:5 (1968), 337–342 | DOI
[7] Freudental A. M., Geiringer H., “The Mathematical Theories of the Inelastic Continuum”, Handbuch der Physik, Bd. 6, Elasizitaet und Plastizitaet, ed. S. Flugge, Springer-Verlag, Berlin, Goettingen, Heidelberg, 1958, 229–433 | DOI
[8] Ovsyannikov L. V., Gruppovoi analiz differentsial'nykh uravnenii [Group analysis of differential equations], Nauka, Moscow, 1978, 399 pp. (In Russian)
[9] Golovin S. V., Chesnokov A. A., Gruppovoi analiz differentsial'nykh uravnenii [Group analysis of differential equations], Novosibirsk State Univ., Novosibirsk, 2008, 113 pp. (In Russian)
[10] Bluman G. W., Cheviakov A. F., Anco S. C., Applications of symmetry methods to partial differential equations, Applied Mathematical Sciences, 168, Springer-Verlag, Berlin, Heidelberg, 2010, 414 pp. | DOI | Zbl
[11] Shih C. F., Elastic-plastic analysis of combined mode crack problems, Ph. D. Thesis, Harvard University, Cambridge, M.A., 1973
[12] Shlyannikov V. N., Elastic-plastic mixed-mode fracture criteria and parameters, Lecture Notes in Applied and Computational Mechanics, 7, Springer-Verlag, Berlin, Heidelberg, 2003, 234 pp. | DOI | Zbl
[13] Astaf'ev V. I., Krutov A. N., “Stress distribution near the tip of an inclined crack in the nonlinear fracture mechanics”, Mech. Solids, 36:5 (2001), 101–108
[14] Stepanova L. V., Yakovleva E. M., “Mixed-mode loading of the structural elements with defect”, Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:2 (2015), 358–381 (In Russian) | DOI | Zbl
[15] Duchin V. R., “Invariant solution of motion equations for “power-law” fluids”, Vestn. Mosk. Univ., Ser. I. Matematika. Mekhanika, 1988, no. 2, 91–95 (In Russian) | Zbl
[16] Keller I. E., “Integrability of the Equilibrium and Compatibility Equations for a Viscoplastic Medium with Negative Strain Rate Sensitivity”, Dokl. Phys., 58:8 (2013), 643–646 | DOI