Variant of multimodal vibration damping of~electroviscoelastic structures
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 3, pp. 475-495.

Voir la notice de l'article provenant de la source Math-Net.Ru

In technical applications it takes place the problem of vibration damping in certain regions of the structure, at the location of optical sensors for instance, at any external dynamic excitations with no mass increase and no changes in spectral portrait. In order to solve these problems it is widespread the use of special damping devices: piezoelectric elements connected to external electric circuits and attached to the structure. It became possible due to piezoelectric effect, which provides transformation of part of energy of vibrations into electric one, which is dissipated in external electric circuit. So that by using appropriate electric circuits one may dissipate internal energy and therefore reduce structural vibrations in definite frequency range. As a rule, external circuit of single branch, which shunts single piezoelectric element, allows vibration damping on one certain frequency. Due to the fact, that practical applications usually include requirements of damping of several modes by one and the same technical devices, the problem of multimodal vibration damping in smart-structures is rather acute. The objective of this paper is the study of possibility of vibration damping on several modes by using single external series $RL$-circuit, connected to electrodes of single piezoelectric element on the basis of solution of problems on natural and forced steady-state vibrations of electroelastic systems with external electric circuits.
Keywords: electroviscoelastic structures with piezoelectric elements, passive external electric circuits, multimodal damping, natural vibrations, forced vibrations.
@article{VSGTU_2016_20_3_a4,
     author = {D. A. Oshmarin and N. V. Sevodina and M. A. Yurlov and N. A. Yurlova},
     title = {Variant of multimodal vibration damping of~electroviscoelastic structures},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {475--495},
     publisher = {mathdoc},
     volume = {20},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a4/}
}
TY  - JOUR
AU  - D. A. Oshmarin
AU  - N. V. Sevodina
AU  - M. A. Yurlov
AU  - N. A. Yurlova
TI  - Variant of multimodal vibration damping of~electroviscoelastic structures
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 475
EP  - 495
VL  - 20
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a4/
LA  - ru
ID  - VSGTU_2016_20_3_a4
ER  - 
%0 Journal Article
%A D. A. Oshmarin
%A N. V. Sevodina
%A M. A. Yurlov
%A N. A. Yurlova
%T Variant of multimodal vibration damping of~electroviscoelastic structures
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 475-495
%V 20
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a4/
%G ru
%F VSGTU_2016_20_3_a4
D. A. Oshmarin; N. V. Sevodina; M. A. Yurlov; N. A. Yurlova. Variant of multimodal vibration damping of~electroviscoelastic structures. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 3, pp. 475-495. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_3_a4/

[1] Hagood N. W., von Flotow A., “Damping of structural vibrations with piezoelectricmaterials and passive electrical networks”, Journal of Sound and Vibration, 146:2 (1991), 243–268 | DOI

[2] Moheimani S. O. R., Fleming A. J., Piezoelectric transducers for vibration control and damping, Advances in Industrial Control, Springer-Verlag, London, 2006, xvi+271 pp. | DOI | Zbl

[3] Wu S. Y., “Piezoelectric shunts with parallel $R-L$ circuit for structural damping and vibration control”, Proc. SPIE, 2720, Smart Structures and Materials 1996: Passive Damping and Isolation (1996), 259–269 | DOI

[4] Hollkamp J. J., “Multimodal passive vibration suppression with piezoelectric materials and resonant shunts”, Journal of Intelligent Material Systems and Structures, 5:1 (1996), 49–57 | DOI

[5] Wu S. Y., “Method for multiple mode shunt damping of structural vibration using a single PZT transducer”, Proc. SPIE, 3327, Smart Structures and Materials 1998: Passive Damping and Isolation (1998), 159–168 | DOI

[6] Wu S. Y., “Multiple PZT transducers implemented with multiple-mode piezoelectric shunting for passive vibration damping”, Proc. SPIE, 3672, Smart Structures and Materials 1999: Passive Damping and Isolation (1999), 112–122 | DOI

[7] Wu S. Y., Bicos A. S., “Structural vibration damping experiments using improved piezoelectric shunts”, Proc. SPIE, 3045, Smart Structures and Materials 1997: Passive Damping and Isolation (1997), 40–50 | DOI

[8] Behrens S., Moheimani S. O. R., “Current flowing multiple mode piezoelectric shunt dampener”, Proc. SPIE, 4697, Smart Structures and Materials 2002: Damping and Isolation (2002), 117–127 | DOI

[9] Behrens S., Moheimani S. O. R., Fleming A. J., “Multiple mode passive piezoelectric shunt dampener”, Proc. IFAC Mechatronics (Berkeley, CA, Dec. 2002), 2002

[10] Fleming A. J., Moheimani S. O. R., “Adaptive piezoelectric shunt damping”, Smart Materials and Structures, 12:1 (2003), 36–48 | DOI

[11] Behrens S., Moheimani S. O. R., “Optimal resistive elements for multiple mode shunt damping of a piezoelectric laminate beam”, Proceedings of the 39th IEEE Conference on Decision and Control, v. 4, 2000, 4018–4023 | DOI

[12] Tai-Hong Cheng, Il-Kwon Oh, “A current-flowing electromagnetic shunt damper for multi-mode vibration control of cantilever beams”, Smart Materials and Structures, 18:9 (2009), 095036 | DOI

[13] Vidoli S., dell'Isola F., “Vibration control in plates by uniformly distributed PZT actuators interconnected via electric networks”, European Journal of Mechanics – A/Solids, 20:3 (2001), 435–456 | DOI | Zbl

[14] Porfiri M., dell'Isola F., Mascioli F. M., “Circuit analog of a beam and its application to multimodal vibration damping, using piezoelectric transducers”, International Journal of Circuit Theory and Applications, 32:4 (2004), 167–198 | DOI | Zbl

[15] dell'Isola F., Henneke E. G., Porfiri M., “Piezoelectromechanical structures: new trends towards the multimodal passive vibration control”, Proc. SPIE, 5052, Smart Structures and Materials 2003: Damping and Isolation (2003), 392–402 | DOI

[16] Maurini C., dell'Isola F., Del Vescovo D., “Comparison of piezoelectronic networks acting as distributed vibration absorbers”, Mechanical Systems and Signal Processing, 18:5 (2004), 1243–1271 | DOI

[17] Giorgio I., Culla A., Del Vescovo D., “Multimode vibration control using several piezoelectric transducers shunted with a multiterminal network”, Arch. Appl. Mech, 79:9 (2009), 859–879 | DOI | Zbl

[18] Viana F. A. C., Steffen V., Jr., “Multimodal Vibration Damping through Piezoelectric Patches and Optimal Resonant Shunt Circuits”, J. Braz. Soc. Mech. Sci. Eng., 28:3 (2006), 293–310 | DOI | MR

[19] Casadei F., Ruzenne M., Dozio L., Cunefare K. A., “Broadband vibration control through periodic arrays of resonant shunts: experimental investigation on plates”, Smart Materials and Structures, 19:1 (2010), 015002 | DOI

[20] Washizu K., Variational Methods in Elasticity and Plasticity, Pergamon Press, London, 1982, 540 pp. | MR | Zbl

[21] Parton V. Z., Kudryavtsev B. A., Electromagnetoelasticity: Piezoelectrics and Electrically Conductive Solids, Gordon and Breach Science Publ. Ltd, New York, 1988, 503 pp.

[22] Karnaukhov V. G., Kirichok I. F., Elektrotermoviazkouprugost' [Electrothermal viscoelasticity], Nauk. dumka, Kiev, 1988, 319 pp. (In Russian)

[23] Matveenko V. P., Kligman E. P., Yurlov M. A., Yurlova N. A., “Simulation and optimization of dynamic characteristics of piezoelectric smart structures”, Phys. Mesomech., 15:3 (2012), 190–199 | DOI

[24] Matveenko V. P., Yurlov M. A., Yurlova N. A., “Optimization of the damping properties electro-viscoelastic objects with external electric circuits”, Mechanics of Advanced Materials: Analysis of Properties and Performance, eds. V. V. Silberschmidt, V. P. Matveenko, Springer International Publishing, Switzerland, 2015, 79–100 | DOI

[25] Sevodina N. V., Yurlova N. A., Oshmarin D. A., “The optimal placement of the piezoelectric element in a structure based on the solution of the problem of natural vibrations”, Solid State Phenomena, 243 (2016), 67–74 | DOI

[26] Ivanov A. S. Matvienko V. P. Oshmarin D. A, Sevodina N. V., Yurlov M. A., Yurlova N. A., “Justification of equivalent substitution circuits used to optimize the dissipative properties of electroelastic bodies with external electric circuits”, Mechanics of Solids, 51:3 (2016), 273–283 | DOI