Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_2_a9, author = {I. V. Kudinov and E. V. Stefanyuk and M. P. Skvortsova and E. V. Kotova and G. M. Sinyaev}, title = {On one method for solving transient heat conduction problems}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {342--353}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a9/} }
TY - JOUR AU - I. V. Kudinov AU - E. V. Stefanyuk AU - M. P. Skvortsova AU - E. V. Kotova AU - G. M. Sinyaev TI - On one method for solving transient heat conduction problems JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 342 EP - 353 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a9/ LA - ru ID - VSGTU_2016_20_2_a9 ER -
%0 Journal Article %A I. V. Kudinov %A E. V. Stefanyuk %A M. P. Skvortsova %A E. V. Kotova %A G. M. Sinyaev %T On one method for solving transient heat conduction problems %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 342-353 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a9/ %G ru %F VSGTU_2016_20_2_a9
I. V. Kudinov; E. V. Stefanyuk; M. P. Skvortsova; E. V. Kotova; G. M. Sinyaev. On one method for solving transient heat conduction problems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 342-353. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a9/
[1] Kudinov V. A., Stefanyuk E. V., “A heat conduction problem by determining the temperature perturbation front”, Izvestiia RAN. Energetika, 2008, no. 5, 141–157 (In Russian)
[2] Lykov A. V., “Methods for solving nonlinear equations of nonstationary heat conduction”, Izvestiia AN SSSR. Energetika i transport, 1970, no. 5, 109–150 (In Russian) | Zbl
[3] Goodman T. R, “Application of integral methods to transient nonlinear heat transfer”, Advances in Heat Transfer, 1 (1964), 51–122 | DOI | Zbl
[4] Biot M. A., Variational Principles in Heat Transfer: A Unified Lagrangian Analysis of Dissipative Phenomena, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1970, x+185 pp. | Zbl
[5] Veinik A. I., Priblizhennyi raschet protsessov teploprovodnosti [An approximate calculation of heat conduction processes], Gosenergoizdat, Moscow, Leningrad, 1959, 184 pp. (In Russian)
[6] Shvets M. E., “The approximate solution of some problems of the hydrodynamics of the boundary layer”, Prikladnaia matematika i mekhanika, 13:3 (1949), 257–266 (In Russian)
[7] Timoshpol'skii V. I., Postol'nik Yu. S., Andrianov D. N., Teoreticheskie osnovy teplofiziki i termomekhaniki v metallurgii [Theoretical foundations of thermal physics and metallurgy thermomechanics], Belorusskaia nauka, Minsk, 2005, 560 pp. (In Russian)
[8] Glazunov Yu. T., Variatsionnye metody [Variation Methods], Reguliarnaia i khaoticheskaia dinamika; Institut komp'iuternykh issledovanii, Moscow, Izhevsk, 2006, 470 pp. (In Russian)
[9] Belyaev N. M., Ryadno A. A., Metody nestatsionarnoi teploprovodnosti [Methods of Transient Heat Conduction], Vyssh. shk., Moscow, 1978, 328 pp. (In Russian)
[10] Fedorov F. M., Granichnyi metod resheniia prikladnykh zadach matematicheskoi fiziki [The boundary method for solving applied problems of mathematical physics], Nauka, Novosibirsk, 2000, 220 pp. (In Russian) | MR | Zbl
[11] Kudryashev L. I., Men'shikh N. L., Priblizhennye resheniia nelineinykh zadach teploprovodnosti [Approximate solution of the nonlinear heat conduction problems], Mashinostroenie, Moscow, 1979, 232 pp. (In Russian)
[12] Kudinov V. A., Stefanyuk E. V., “Analytical solution method for heat conduction problems based on the introduction of the temperature perturbation front and additional boundary conditions”, Journal of Engineering Physics and Thermophysics, 82:3 (2009), 537–555 | DOI | MR
[13] Stefanyuk E. V., Kudinov V. A., “Approximate analytic solution of heat conduction problems with a mismatch between initial and boundary conditions”, Russian Math. (Iz. VUZ), 54:4 (2010), 55–61 | DOI | MR | Zbl
[14] Kudinov V. A., Kudinov I. V., Skvortsova M. P., “Generalized functions and additional boundary conditions in heat conduction problems for multilayered bodies”, Comput. Math. Math. Phys., 55:4 (2015), 666–676 | DOI | DOI | MR | Zbl
[15] Lykov A. V., Teoriia teploprovodnosti [Theory of heat conduction], Vyssh. shk., Moscow, 1967, 600 pp. (In Russian) | Zbl