Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_2_a8, author = {V. E. Zoteev and R. Yu. Makarov}, title = {A numerical method for the determination of parameters of the strain softening creep model}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {328--341}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a8/} }
TY - JOUR AU - V. E. Zoteev AU - R. Yu. Makarov TI - A numerical method for the determination of parameters of the strain softening creep model JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 328 EP - 341 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a8/ LA - ru ID - VSGTU_2016_20_2_a8 ER -
%0 Journal Article %A V. E. Zoteev %A R. Yu. Makarov %T A numerical method for the determination of parameters of the strain softening creep model %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 328-341 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a8/ %G ru %F VSGTU_2016_20_2_a8
V. E. Zoteev; R. Yu. Makarov. A numerical method for the determination of parameters of the strain softening creep model. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 328-341. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a8/
[1] Malinin N. N., Prikladnaia teoriia plastichnosti i polzuchesti [Applied theory of plasticity and creep], Mashinostroenie, Moscow, 1975, 387 pp. (In Russian)
[2] Sosnin O. V., Lyubashevskaya I. V., Novoselya I. V., “Comparative estimation of high-temperature creep and rupture of structural materials”, J. Appl. Mech. Tech. Phys., 49:2 (2008), 262–266 | DOI
[3] Bellenger E., Bussy P., “Phenomenological modeling and numerical simulation of different modes of creep damage evolution”, International Journal of Solids and Structures, 38:4 (2001), 577–604 | DOI | Zbl
[4] Raschety i ispytaniia na prochnost'. Raschetnye metody opredeleniia nesushchei sposobnosti i dolgovechnosti elementov mashin i konstruktsii [Design calculations and strength testing. Calculation methods for the determination of bearing capacity and durability of machine elements and constructions], All-Russian scientific research institute for standardization and certification in the branch of mechanical engineering, Moscow, 1982, 90 pp. (In Russian)
[5] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrusheniia materialov i elementov konstruktsii [Rheological deformation and fracture of materials and structural elements], Mashinostroenie-1, Moscow, 2004, 264 pp. (In Russian)
[6] Demidenko E. Z., Lineinaia i nelineinaia regressiia [Linear and Nonlinear Regression], Finansy i statistika, Moscow, 1981, 302 pp. (In Russian) | MR
[7] Zoteev V. E., Parametricheskaia identifikatsiia dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravnenii [Parametric Identification of Dissipative Mechanical Systems Based on Difference Equation], ed. V. P. Radchenko, Mashinostroenie, Moscow, 2009, 344 pp. (In Russian)
[8] Zausaeva M. A., Zoteev V. E., “Definition of Parameters of 2D Dynamical Processes on the Basis of Difference Schemes”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, no. 1(20), 154–161 (In Russian) | DOI
[9] Zoteev V. E., “Mathematical base for difference equations formulation in parametrical identification problems”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 2(17), 192–202 (In Russian) | DOI
[10] Zoteev V. E., “Parametrical identification of linear dynamical system on the basis of stochastic difference equations”, Matem. Mod., 20:9 (2008), 120–128 (In Russian) | MR | Zbl
[11] Sosnin O. V., Gorev B. V., Nikitenko A. F., Energeticheskii variant teorii polzuchesti [Energetic variant of the creep theory], Institut Gidrodinamiki, Novosibirsk, 1986, 95 pp. (In Russian)