A numerical method for the determination of parameters of the strain softening creep model
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 328-341.

Voir la notice de l'article provenant de la source Math-Net.Ru

The trends of decreasing of weight of machines and increasing of their quality, and intention to the fullest use of mechanic properties of materials demand the development of numerical methods for analysis of the stress-strain state of materials undo the terms of creep. The article discusses the development of new numerical method for determining the parameters of the strain softening creep model. The base of new method is generalized regression model, which was built on the basis of difference equations for describing the creep. The relations between coefficients of difference equation and parameters of the strain softening creep model allow reduce the problem of parametric identification to an iterative procedure for RMS of coefficients of regression model, which is linear. The approbation of numerical method with five creep curves of aluminum alloy is accomplished. The approbation confirms scientific credibility of built relations and efficiency of new numerical method.
Keywords: strain softening creep model, difference equations, generalized regression model, nonlinear regression, root mean square evaluation.
@article{VSGTU_2016_20_2_a8,
     author = {V. E. Zoteev and R. Yu. Makarov},
     title = {A numerical method for the determination of parameters of the strain softening creep model},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {328--341},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a8/}
}
TY  - JOUR
AU  - V. E. Zoteev
AU  - R. Yu. Makarov
TI  - A numerical method for the determination of parameters of the strain softening creep model
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 328
EP  - 341
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a8/
LA  - ru
ID  - VSGTU_2016_20_2_a8
ER  - 
%0 Journal Article
%A V. E. Zoteev
%A R. Yu. Makarov
%T A numerical method for the determination of parameters of the strain softening creep model
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 328-341
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a8/
%G ru
%F VSGTU_2016_20_2_a8
V. E. Zoteev; R. Yu. Makarov. A numerical method for the determination of parameters of the strain softening creep model. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 328-341. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a8/

[1] Malinin N. N., Prikladnaia teoriia plastichnosti i polzuchesti [Applied theory of plasticity and creep], Mashinostroenie, Moscow, 1975, 387 pp. (In Russian)

[2] Sosnin O. V., Lyubashevskaya I. V., Novoselya I. V., “Comparative estimation of high-temperature creep and rupture of structural materials”, J. Appl. Mech. Tech. Phys., 49:2 (2008), 262–266 | DOI

[3] Bellenger E., Bussy P., “Phenomenological modeling and numerical simulation of different modes of creep damage evolution”, International Journal of Solids and Structures, 38:4 (2001), 577–604 | DOI | Zbl

[4] Raschety i ispytaniia na prochnost'. Raschetnye metody opredeleniia nesushchei sposobnosti i dolgovechnosti elementov mashin i konstruktsii [Design calculations and strength testing. Calculation methods for the determination of bearing capacity and durability of machine elements and constructions], All-Russian scientific research institute for standardization and certification in the branch of mechanical engineering, Moscow, 1982, 90 pp. (In Russian)

[5] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrusheniia materialov i elementov konstruktsii [Rheological deformation and fracture of materials and structural elements], Mashinostroenie-1, Moscow, 2004, 264 pp. (In Russian)

[6] Demidenko E. Z., Lineinaia i nelineinaia regressiia [Linear and Nonlinear Regression], Finansy i statistika, Moscow, 1981, 302 pp. (In Russian) | MR

[7] Zoteev V. E., Parametricheskaia identifikatsiia dissipativnykh mekhanicheskikh sistem na osnove raznostnykh uravnenii [Parametric Identification of Dissipative Mechanical Systems Based on Difference Equation], ed. V. P. Radchenko, Mashinostroenie, Moscow, 2009, 344 pp. (In Russian)

[8] Zausaeva M. A., Zoteev V. E., “Definition of Parameters of 2D Dynamical Processes on the Basis of Difference Schemes”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, no. 1(20), 154–161 (In Russian) | DOI

[9] Zoteev V. E., “Mathematical base for difference equations formulation in parametrical identification problems”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 2(17), 192–202 (In Russian) | DOI

[10] Zoteev V. E., “Parametrical identification of linear dynamical system on the basis of stochastic difference equations”, Matem. Mod., 20:9 (2008), 120–128 (In Russian) | MR | Zbl

[11] Sosnin O. V., Gorev B. V., Nikitenko A. F., Energeticheskii variant teorii polzuchesti [Energetic variant of the creep theory], Institut Gidrodinamiki, Novosibirsk, 1986, 95 pp. (In Russian)