Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_2_a5, author = {L. S. Pulkina and A. E. Savenkova}, title = {A problem with nonlocal integral condition of the second kind for one-dimensional hyperbolic equation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {276--289}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a5/} }
TY - JOUR AU - L. S. Pulkina AU - A. E. Savenkova TI - A problem with nonlocal integral condition of the second kind for one-dimensional hyperbolic equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 276 EP - 289 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a5/ LA - ru ID - VSGTU_2016_20_2_a5 ER -
%0 Journal Article %A L. S. Pulkina %A A. E. Savenkova %T A problem with nonlocal integral condition of the second kind for one-dimensional hyperbolic equation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 276-289 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a5/ %G ru %F VSGTU_2016_20_2_a5
L. S. Pulkina; A. E. Savenkova. A problem with nonlocal integral condition of the second kind for one-dimensional hyperbolic equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 276-289. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a5/
[1] Gordeziani D. G., Avalishvili G. A., “On the constructing of solutions of the nonlocal initial boundary value problems for one-dimensional medium oscillation equations”, Matem. Mod., 12:1 (2000), 94–103 (In Russian) | MR | Zbl
[2] Bouziani A., “On the solvability of a nonlocal problems arising in dynamics of moisture transfer”, Georgian Mathematical Journal, 10:4 (2003), 607–622 | DOI | MR | Zbl
[3] Pulkina L. S., “A nonlocal problem with integral conditions for a hyperbolic equation”, Differ. Equ., 40:7 (2004), 947–953 | DOI | MR | Zbl
[4] Kozhanov A. I., Pulkina L. S., “On the solvability of boundary value problems with a nonlocal boundary condition of integral form for multidimensional hyperbolic equations”, Differ. Equ., 42:9 (2006), 1233–1246 | DOI | MR | Zbl
[5] Nakhushev A. M., Zadachi so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Problems with shifts for partial differential equations], Nauka, Moscow, 2006, 288 pp. (In Russian) | Zbl
[6] Dmitriev V. B., “A nonlocal problem with integral conditions for the wave equation”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2006, no. 2(42), 15–27 (In Russian) | MR
[7] Strigun M. V., “On certain nonlocal problem with integral boundary condition for hyperbolic equation”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2009, no. 8(74), 78–87 (In Russian)
[8] Avalishvili G., Avalishvili M., Gordeziani D., “On integral nonlocal boundary problems for some partial differential equations”, Bull. Georg. Natl. Acad. Sci., 5:1 (2011), 31–37 | MR | Zbl
[9] Pulkina L. S., “Boundary-value problems for a hyperbolic equation with nonlocal conditions of the I and II kind”, Russian Math. (Iz. VUZ), 56:4 (2012), 62–69 | DOI | MR | Zbl
[10] Pulkina L. S., Zadachi s neklassicheskimi usloviiami dlia giperbolicheskikh uravnenii [Problems with non-classical conditions for hyperbolic equations], Samara University, Samara, 2012, 194 pp. (In Russian)
[11] Pulkina L. S., “Solution to nonlocal problems of pseudohyperbolic equations”, EJDE, 2014:116 (2014), 1–9 http://ejde.math.txstate.edu/Volumes/2014/116/pulkina.pdf | MR
[12] Lions J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires [Some Methods for Solving Nonlinear Boundary Value Problems], Etudes mathematiques, Dunod, Paris, 1969, xx+554 pp. (In French) | MR | Zbl
[13] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki [Boundary Value Problems of Mathematical Physics], Nauka, Moscow, 1973, 402 pp. (In Russian) | MR | Zbl
[14] Tikhonov A. N.; Samarskii A. A., Equations of mathematical physics, International Series of Monographs on Pure and Applied Mathematics, 39, Pergamon Press., Oxford etc., 1963, xvi+765 pp. | MR | Zbl
[15] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., “Theory of free and forced vibrations of a rigid rod based on the Rayleigh model”, Dokl. Phys., 52:11 (2007), 607–612 | DOI | MR | Zbl
[16] Doronin G. G., Lar'kin N. A., Souza A. J., “A hyperbolic problem with nonlinear second-order boundary damping”, EJDE, 1998:28 (1998), 1–10 http://ejde.math.txstate.edu/Volumes/1998/28/Doronin.pdf
[17] Korpusov M. O., Razrushenie v neklassicheskikh volnovykh uravneniiakh [Blow-up in nonclassical wave equations], URSS, Moscow, 2010, 237 pp. (In Russian)