Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_2_a4, author = {M. V. Dolgopolov and I. N. Rodionova and V. M. Dolgopolov}, title = {On one nonlocal problem for the {Euler--Darboux} equation}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {259--275}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a4/} }
TY - JOUR AU - M. V. Dolgopolov AU - I. N. Rodionova AU - V. M. Dolgopolov TI - On one nonlocal problem for the Euler--Darboux equation JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 259 EP - 275 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a4/ LA - ru ID - VSGTU_2016_20_2_a4 ER -
%0 Journal Article %A M. V. Dolgopolov %A I. N. Rodionova %A V. M. Dolgopolov %T On one nonlocal problem for the Euler--Darboux equation %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 259-275 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a4/ %G ru %F VSGTU_2016_20_2_a4
M. V. Dolgopolov; I. N. Rodionova; V. M. Dolgopolov. On one nonlocal problem for the Euler--Darboux equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 259-275. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a4/
[1] Dolgopolov V. M., Dolgopolov M. V., Rodionova I. N., “Two problems for a hyperbolic equation of the third order in three-dimensional space”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 67:8/1 (2008), 95–107 (In Russian)
[2] Dolgopolov V. M., Dolgopolov M. V., Rodionova I. N., “Construction of special classes of solutions for some differential equations of hyperbolic type”, Dokl. Math., 80:3 (2009), 860–866 | DOI | MR | Zbl
[3] Dolgopolov M. V., Rodionova I. N., “Problems involving equations of hyperbolic type in the plane or three-dimensional space with conjugation conditions on a characteristic”, Izv. Math., 75:4 (2011), 681–689 | DOI | DOI | MR | Zbl
[4] Dolgopolov V. M., Rodionova I. N., “Extremal properties of solutions of special classes of a hyperbolic-type equation”, Math. Notes, 92:4 (2012), 490–496 | DOI | DOI | MR | Zbl
[5] Dolgopolov M. V., Dolgopolov V. M., Rodionova I. N., “Two Problems Involving Equations of Hyperbolic Type of the Third Order in the Three-Dimensional Space”, Advancement and Development in Mathematical Sciences, 3:1–2 (2012), 25–38
[6] Rodionova I. N., Dolgopolov V. M., “A similar for $\Delta_1$ problem for the second-order hyperbolic equation in the 3D Euclidean space”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2015, no. 4(19), 697–709 (In Russian) | DOI
[7] Nakhushev A. M., “A new boundary value problem for a degenerate hyperbolic equation”, Sov. Math., Dokl., 10:4 (1969), 935–938 | Zbl
[8] Nakhushev A. M., “On some boundary value problems for hyperbolic equations and equations of mixed type”, Differ. Uravn., 5:1 (1969), 44–59 (In Russian) | Zbl
[9] Nakhusheva Z. A., Nelokal'nye kraevye zadachi dlia osnovnykh i smeshannogo tipov differentsial'nykh uravnenii [Nonlocal boundary value problems a for basic and mixed types of differential equations], KBSC Academy of Sciences Publ., Nal'chik, 2012, 196 pp. (In Russian)
[10] Andreev A. A., Ryabov A. V., “Some boundary value problems of Bitsadze–Samarsky type for a generalized Tricomi equation in unbounded domains”, Differentsial'nye uravneniia i ikh prilozheniia [Differential equations and their applications], Kuibyshev Polytechnical Institute Publ., Kuibyshev, 1975, 9–15 (In Russian)
[11] Andreev A. A., Ryabov A. V., “On some boundary value problems for hyperbolic equations degenerating inside a domain”, Differentsial'nye uravneniia i ikh prilozheniia [Differential equations and their applications], Kuibyshev Polytechnical Institute Publ., Kuibyshev, 1975, 15–21 (In Russian)
[12] Volkodavov V. F., Repin O. A., “A solution of the boundary value problem with shift for a hyperbolic equation”, Differentsial'nye uravneniia i ikh prilozheniia [Differential equations and their applications], Kuibyshev Polytechnical Institute Publ., Kuibyshev, 1975, 44–49 (In Russian) | MR
[13] Volkodavov V. F., Nikolaev N. Ya., “A new problem with shift in an unbounded domain for the Euler–Darboux equation with positive parameters”, Matematicheskaia fizika [Mathematical Physics], Kuibyshev Polytechnical Institute Publ., Kuibyshev, 1979, 3–9 (In Russian)
[14] Kirilenko S. V., Enukova T. M., “On the solution of a $ \Sigma_ {ab} $ boundary value problem with a shift in an unbounded domain for the Euler–Darboux equation with positive parameters”, Matematicheskaia fizika [Mathematical Physics], Kuibyshev Polytechnical Institute Publ., Kuibyshev, 1979, 12–24 (In Russian)
[15] Volkodavov V. F., Mel'nikova A. I., “A problem with nonlocal boundary conditions for the degenerate hyperbolic equation”, Differentsial'nye uravneniia (Matematicheskaia fizika) [Differential Equations (Mathematical Physics)], v. 248, Kuibyshev, 1981, 24–31 (In Russian) | MR
[16] Volkodavov V. F., Lomonosova T. B., “A generalized Goursat problem for the Euler–Darboux equation with positive parameters”, Differentsial'nye uravneniia s chastnymi proizvodnymi [Differential equations with partial derivatives], Kuibyshev, 1983, 3–8 (In Russian) | MR
[17] Volkodavov V. F., Rodionova I. N., “Solution of Volterra integral equations system of the first kind with one special function in the kernels”, Differ. Uravn., 26:5 (1990), 903–904 (In Russian) | Zbl
[18] Volkodavov V. F., Rodionova I. N., “Inversion formulas for some two-dimensional Volterra integral equations of the first kind”, Russian Math. (Iz. VUZ), 42:9 (1998), 28–30 | MR | Zbl
[19] Andreev A. A., Ogorodnikov E. N., “On some boundary value problems with conditions of Bitsadze–Samarsky type for a system of equations with the Bitsadze–Lykov operator”, Matematicheskoe modelirovanie i kraevye zadachi [Mathematical modeling and boundary value problems], Samara State Technical Univ., Samara, 1999, 3–11 (In Russian)
[20] Repin O. A., Kraevye zadachi so smeshcheniem dlia uravnenii giperbolicheskogo i smeshannogo tipov [Boundary value problems with shift for equations of hyperbolic and mixed type], Saratov Univ., Samara Branch, Samara, 1992, 164 pp. (In Russian) | MR | Zbl
[21] Nakhushev A. M., Zadachi so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Problems with shifts for partial differential equations], Nauka, Moscow, 2006, 287 pp. (In Russian) | Zbl
[22] Repin O. A., “An analog of the Nakhushev problem for the Bitsadze–Lykov equation”, Differ. Equ., 38:10 (2002), 1503–1509 | DOI | MR | Zbl
[23] Repin O. A., Kumykova S. K., “On a boundary value problem with shift for an equation of mixed type in an unbounded domain”, Differ. Equ., 48:8 (2012), 1127–1136 | DOI | MR | Zbl
[24] Repin O. A., Kumykova S. K., “A nonlocal problem for a mixed-type equation whose order degenerates along the line of change of type”, Russian Math. (Iz. VUZ), 57:8 (2013), 49–56 | DOI | MR | Zbl
[25] Repin O. A., Kumykova S. K., “A nonlocal problem with fractional derivatives for the mixed type equation”, Russian Math. (Iz. VUZ), 58:8 (2014), 65–70 | DOI | MR | Zbl
[26] Repin O. A., Kumykova S. K., “On a class of nonlocal problems for hyperbolic equations with degeneration of type and order”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 4(37), 22–32 (In Russian) | DOI | MR
[27] Andreev A. A., Ogorodnikov E. N., “Application of matrix integral-differential operators in the formulation and solution of nonlocal boundary value problems for systems of hyperbolic equations”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2001, no. 12, 45–53 (In Russian) | DOI
[28] Andreev A. A., Ogorodnikov E. N., “Some local and non-local analogues of the Cauchy–Goursat problem for a system of Bitsadze–Lykov equations with an involutive matrix”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2002, no. 16, 19–35 (In Russian) | DOI