On one nonlocal problem for the Euler--Darboux equation
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 259-275.

Voir la notice de l'article provenant de la source Math-Net.Ru

The boundary value problem with displacement is determined for the generalized Euler–Darboux equation in the field representing the first quadrant. This problem, unlike previous productions, specifies two conditions, connect integrals and fractional derivatives from the values of the sought solution in the boundary points. On the line of singularity of the coefficients of the equations the matching conditions continuous with respect to the solution and its normal derivation are considered. The authors took for the basis of solving the earlier obtained by themselves the Cauchy problem solution of the special class due to the integral representations of one of the specified functions acquired simple form both for positive and for negative values of Euler–Darboux equation parameter. The nonlocal problem set by the authors is reduced to the system of Volterra integral equations with unpacked operators, the only solution which is given explicitly in the corresponding class of functions. From the above the uniqueness of the solution of nonlocal problem follows. The existence is proved by the direct verification. This reasoning allowed us to obtain the solution of nonlocal problem in the explicit form both for the positive and for the negative values of Euler–Darboux equation parameter.
Keywords: integral equations system, boundary value problem, partial differential equation.
@article{VSGTU_2016_20_2_a4,
     author = {M. V. Dolgopolov and I. N. Rodionova and V. M. Dolgopolov},
     title = {On one nonlocal problem for the {Euler--Darboux} equation},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {259--275},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a4/}
}
TY  - JOUR
AU  - M. V. Dolgopolov
AU  - I. N. Rodionova
AU  - V. M. Dolgopolov
TI  - On one nonlocal problem for the Euler--Darboux equation
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 259
EP  - 275
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a4/
LA  - ru
ID  - VSGTU_2016_20_2_a4
ER  - 
%0 Journal Article
%A M. V. Dolgopolov
%A I. N. Rodionova
%A V. M. Dolgopolov
%T On one nonlocal problem for the Euler--Darboux equation
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 259-275
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a4/
%G ru
%F VSGTU_2016_20_2_a4
M. V. Dolgopolov; I. N. Rodionova; V. M. Dolgopolov. On one nonlocal problem for the Euler--Darboux equation. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 259-275. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a4/

[1] Dolgopolov V. M., Dolgopolov M. V., Rodionova I. N., “Two problems for a hyperbolic equation of the third order in three-dimensional space”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 67:8/1 (2008), 95–107 (In Russian)

[2] Dolgopolov V. M., Dolgopolov M. V., Rodionova I. N., “Construction of special classes of solutions for some differential equations of hyperbolic type”, Dokl. Math., 80:3 (2009), 860–866 | DOI | MR | Zbl

[3] Dolgopolov M. V., Rodionova I. N., “Problems involving equations of hyperbolic type in the plane or three-dimensional space with conjugation conditions on a characteristic”, Izv. Math., 75:4 (2011), 681–689 | DOI | DOI | MR | Zbl

[4] Dolgopolov V. M., Rodionova I. N., “Extremal properties of solutions of special classes of a hyperbolic-type equation”, Math. Notes, 92:4 (2012), 490–496 | DOI | DOI | MR | Zbl

[5] Dolgopolov M. V., Dolgopolov V. M., Rodionova I. N., “Two Problems Involving Equations of Hyperbolic Type of the Third Order in the Three-Dimensional Space”, Advancement and Development in Mathematical Sciences, 3:1–2 (2012), 25–38

[6] Rodionova I. N., Dolgopolov V. M., “A similar for $\Delta_1$ problem for the second-order hyperbolic equation in the 3D Euclidean space”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2015, no. 4(19), 697–709 (In Russian) | DOI

[7] Nakhushev A. M., “A new boundary value problem for a degenerate hyperbolic equation”, Sov. Math., Dokl., 10:4 (1969), 935–938 | Zbl

[8] Nakhushev A. M., “On some boundary value problems for hyperbolic equations and equations of mixed type”, Differ. Uravn., 5:1 (1969), 44–59 (In Russian) | Zbl

[9] Nakhusheva Z. A., Nelokal'nye kraevye zadachi dlia osnovnykh i smeshannogo tipov differentsial'nykh uravnenii [Nonlocal boundary value problems a for basic and mixed types of differential equations], KBSC Academy of Sciences Publ., Nal'chik, 2012, 196 pp. (In Russian)

[10] Andreev A. A., Ryabov A. V., “Some boundary value problems of Bitsadze–Samarsky type for a generalized Tricomi equation in unbounded domains”, Differentsial'nye uravneniia i ikh prilozheniia [Differential equations and their applications], Kuibyshev Polytechnical Institute Publ., Kuibyshev, 1975, 9–15 (In Russian)

[11] Andreev A. A., Ryabov A. V., “On some boundary value problems for hyperbolic equations degenerating inside a domain”, Differentsial'nye uravneniia i ikh prilozheniia [Differential equations and their applications], Kuibyshev Polytechnical Institute Publ., Kuibyshev, 1975, 15–21 (In Russian)

[12] Volkodavov V. F., Repin O. A., “A solution of the boundary value problem with shift for a hyperbolic equation”, Differentsial'nye uravneniia i ikh prilozheniia [Differential equations and their applications], Kuibyshev Polytechnical Institute Publ., Kuibyshev, 1975, 44–49 (In Russian) | MR

[13] Volkodavov V. F., Nikolaev N. Ya., “A new problem with shift in an unbounded domain for the Euler–Darboux equation with positive parameters”, Matematicheskaia fizika [Mathematical Physics], Kuibyshev Polytechnical Institute Publ., Kuibyshev, 1979, 3–9 (In Russian)

[14] Kirilenko S. V., Enukova T. M., “On the solution of a $ \Sigma_ {ab} $ boundary value problem with a shift in an unbounded domain for the Euler–Darboux equation with positive parameters”, Matematicheskaia fizika [Mathematical Physics], Kuibyshev Polytechnical Institute Publ., Kuibyshev, 1979, 12–24 (In Russian)

[15] Volkodavov V. F., Mel'nikova A. I., “A problem with nonlocal boundary conditions for the degenerate hyperbolic equation”, Differentsial'nye uravneniia (Matematicheskaia fizika) [Differential Equations (Mathematical Physics)], v. 248, Kuibyshev, 1981, 24–31 (In Russian) | MR

[16] Volkodavov V. F., Lomonosova T. B., “A generalized Goursat problem for the Euler–Darboux equation with positive parameters”, Differentsial'nye uravneniia s chastnymi proizvodnymi [Differential equations with partial derivatives], Kuibyshev, 1983, 3–8 (In Russian) | MR

[17] Volkodavov V. F., Rodionova I. N., “Solution of Volterra integral equations system of the first kind with one special function in the kernels”, Differ. Uravn., 26:5 (1990), 903–904 (In Russian) | Zbl

[18] Volkodavov V. F., Rodionova I. N., “Inversion formulas for some two-dimensional Volterra integral equations of the first kind”, Russian Math. (Iz. VUZ), 42:9 (1998), 28–30 | MR | Zbl

[19] Andreev A. A., Ogorodnikov E. N., “On some boundary value problems with conditions of Bitsadze–Samarsky type for a system of equations with the Bitsadze–Lykov operator”, Matematicheskoe modelirovanie i kraevye zadachi [Mathematical modeling and boundary value problems], Samara State Technical Univ., Samara, 1999, 3–11 (In Russian)

[20] Repin O. A., Kraevye zadachi so smeshcheniem dlia uravnenii giperbolicheskogo i smeshannogo tipov [Boundary value problems with shift for equations of hyperbolic and mixed type], Saratov Univ., Samara Branch, Samara, 1992, 164 pp. (In Russian) | MR | Zbl

[21] Nakhushev A. M., Zadachi so smeshcheniem dlia uravnenii v chastnykh proizvodnykh [Problems with shifts for partial differential equations], Nauka, Moscow, 2006, 287 pp. (In Russian) | Zbl

[22] Repin O. A., “An analog of the Nakhushev problem for the Bitsadze–Lykov equation”, Differ. Equ., 38:10 (2002), 1503–1509 | DOI | MR | Zbl

[23] Repin O. A., Kumykova S. K., “On a boundary value problem with shift for an equation of mixed type in an unbounded domain”, Differ. Equ., 48:8 (2012), 1127–1136 | DOI | MR | Zbl

[24] Repin O. A., Kumykova S. K., “A nonlocal problem for a mixed-type equation whose order degenerates along the line of change of type”, Russian Math. (Iz. VUZ), 57:8 (2013), 49–56 | DOI | MR | Zbl

[25] Repin O. A., Kumykova S. K., “A nonlocal problem with fractional derivatives for the mixed type equation”, Russian Math. (Iz. VUZ), 58:8 (2014), 65–70 | DOI | MR | Zbl

[26] Repin O. A., Kumykova S. K., “On a class of nonlocal problems for hyperbolic equations with degeneration of type and order”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 4(37), 22–32 (In Russian) | DOI | MR

[27] Andreev A. A., Ogorodnikov E. N., “Application of matrix integral-differential operators in the formulation and solution of nonlocal boundary value problems for systems of hyperbolic equations”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2001, no. 12, 45–53 (In Russian) | DOI

[28] Andreev A. A., Ogorodnikov E. N., “Some local and non-local analogues of the Cauchy–Goursat problem for a system of Bitsadze–Lykov equations with an involutive matrix”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2002, no. 16, 19–35 (In Russian) | DOI