A problem on longitudinal vibration of a bar with elastic fixing
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 249-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study longitudinal vibration in a thick short bar fixed by point forces and springs. For mathematical model we consider a boundary value problem with dynamical boundary conditions for a forth order partial differential equation. The choice of this model depends on a necessity to take into account the result of a transverse strain. It was shown by Rayleigh that neglect of a transverse strain leads to an error. This is confirmed by modern nonlocal theory of vibration. We prove existence of orthogonal with load eigenfunctions and derive representation of them. Established properties of eigenfunctions make possible using the separation of variables method and finding a unique solution of the problem.
Keywords: dynamic boundary conditions, longitudinal vibration, loaded orthogonality, Rayleigh's model.
@article{VSGTU_2016_20_2_a3,
     author = {A. B. Beylin},
     title = {A problem on longitudinal vibration of a bar with elastic fixing},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {249--258},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a3/}
}
TY  - JOUR
AU  - A. B. Beylin
TI  - A problem on longitudinal vibration of a bar with elastic fixing
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 249
EP  - 258
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a3/
LA  - ru
ID  - VSGTU_2016_20_2_a3
ER  - 
%0 Journal Article
%A A. B. Beylin
%T A problem on longitudinal vibration of a bar with elastic fixing
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 249-258
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a3/
%G ru
%F VSGTU_2016_20_2_a3
A. B. Beylin. A problem on longitudinal vibration of a bar with elastic fixing. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 249-258. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a3/

[1] Nerubai M. S., Shtrikov B. L., Kalashnikov V. V., Ul'trazvukovaia mekhanicheskaia obrabotka i sborka [The ultrasonic machining and assembly], Samara Book Publ., Samara, 1995, 191 pp. (In Russian)

[2] Khmelev V. N., Barsukov R. V., Tsyganok S. N., Ul'trazvukovaia razmernaia obrabotka materialov [The ultrasonic dimensional processing of materials], Barnaul, 1997, 120 pp. (In Russian)

[3] Kumabe J., Vibration Cutting, Jikkyou Publishing Co., Ltd., Tokyo, 1979 (In Japanese)

[4] Tikhonov A. N., Samarsky A. A., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 2004, 798 pp. (In Russian)

[5] Strutt J. W., The theory of sound, v. 1, Macmillan and Co., London, 1945, xi+326 pp.

[6] Rao J. S., Advanced Theory of Vibration: Nonlinear Vibration and One Dimensional Structures, John Wiley Sons, Inc., New York, 1992, 431 pp.

[7] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., “Theory of free and forced vibrations of a rigid rod based on the Rayleigh model”, Doklady Physics, 52:11 (2007), 607–612 | DOI | MR | Zbl

[8] Bažant Z., Jirásek M., “Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress”, J. Eng. Mech., 128:11 (2002), 1119–1149 | DOI

[9] Beylin A. B., Pulkina L. S., “A problem on longitudinal vibrations of a rod with dynamic boundary conditions”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2014, no. 3(114), 9–19 (In Russian) | Zbl

[10] Korpusov M. O., Razrushenie v neklassicheskikh volnovykh uravneniiakh [Blow-up in nonclassical wave equations], URSS, Moscow, 2010, 237 pp. (In Russian)