Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_2_a3, author = {A. B. Beylin}, title = {A problem on longitudinal vibration of a bar with elastic fixing}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {249--258}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a3/} }
TY - JOUR AU - A. B. Beylin TI - A problem on longitudinal vibration of a bar with elastic fixing JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 249 EP - 258 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a3/ LA - ru ID - VSGTU_2016_20_2_a3 ER -
%0 Journal Article %A A. B. Beylin %T A problem on longitudinal vibration of a bar with elastic fixing %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 249-258 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a3/ %G ru %F VSGTU_2016_20_2_a3
A. B. Beylin. A problem on longitudinal vibration of a bar with elastic fixing. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 249-258. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a3/
[1] Nerubai M. S., Shtrikov B. L., Kalashnikov V. V., Ul'trazvukovaia mekhanicheskaia obrabotka i sborka [The ultrasonic machining and assembly], Samara Book Publ., Samara, 1995, 191 pp. (In Russian)
[2] Khmelev V. N., Barsukov R. V., Tsyganok S. N., Ul'trazvukovaia razmernaia obrabotka materialov [The ultrasonic dimensional processing of materials], Barnaul, 1997, 120 pp. (In Russian)
[3] Kumabe J., Vibration Cutting, Jikkyou Publishing Co., Ltd., Tokyo, 1979 (In Japanese)
[4] Tikhonov A. N., Samarsky A. A., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 2004, 798 pp. (In Russian)
[5] Strutt J. W., The theory of sound, v. 1, Macmillan and Co., London, 1945, xi+326 pp.
[6] Rao J. S., Advanced Theory of Vibration: Nonlinear Vibration and One Dimensional Structures, John Wiley Sons, Inc., New York, 1992, 431 pp.
[7] Fedotov I. A., Polyanin A. D., Shatalov M. Yu., “Theory of free and forced vibrations of a rigid rod based on the Rayleigh model”, Doklady Physics, 52:11 (2007), 607–612 | DOI | MR | Zbl
[8] Bažant Z., Jirásek M., “Nonlocal Integral Formulations of Plasticity and Damage: Survey of Progress”, J. Eng. Mech., 128:11 (2002), 1119–1149 | DOI
[9] Beylin A. B., Pulkina L. S., “A problem on longitudinal vibrations of a rod with dynamic boundary conditions”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2014, no. 3(114), 9–19 (In Russian) | Zbl
[10] Korpusov M. O., Razrushenie v neklassicheskikh volnovykh uravneniiakh [Blow-up in nonclassical wave equations], URSS, Moscow, 2010, 237 pp. (In Russian)