The Cauchy problem for a general hyperbolic differential equation of the $n$-th order
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 241-248.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper the problem of Cauchy is considered for the hyperbolic differential equation of the $n$-th order with the nonmultiple characteristics. The Cauchy problem is considered for the hyperbolic differential equation of the third order with the nonmultiple characteristics for example. The analogue of D'Alembert formula is obtained as a solution of the Cauchy problem for the hyperbolic differential equation of the third order with the nonmultiple characteristics. The regular solution of the Cauchy problem for the hyperbolic differential equation of the forth order with the nonmultiple characteristics is constructed in an explicit form. The regular solution of the Cauchy problem for the $n$-th order hyperbolic differential equation with the nonmultiple characteristics is constructed in an explicit form. The analogue of D'Alembert formula is obtained as a solution of this problem also. The existence and uniqueness theorem for the regular solution of the Cauchy problem for the $n$-th order hyperbolic differential equation with the nonmultiple characteristics is formulated as the result of the research.
Keywords: $n$-th order hyperbolic differential equation, nonmultiple characteristics, Cauchy problem
Mots-clés : D'Alembert formula.
@article{VSGTU_2016_20_2_a2,
     author = {A. A. Andreev and J. O. Yakovleva},
     title = {The {Cauchy} problem for a general hyperbolic differential equation of the $n$-th order},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {241--248},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a2/}
}
TY  - JOUR
AU  - A. A. Andreev
AU  - J. O. Yakovleva
TI  - The Cauchy problem for a general hyperbolic differential equation of the $n$-th order
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 241
EP  - 248
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a2/
LA  - ru
ID  - VSGTU_2016_20_2_a2
ER  - 
%0 Journal Article
%A A. A. Andreev
%A J. O. Yakovleva
%T The Cauchy problem for a general hyperbolic differential equation of the $n$-th order
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 241-248
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a2/
%G ru
%F VSGTU_2016_20_2_a2
A. A. Andreev; J. O. Yakovleva. The Cauchy problem for a general hyperbolic differential equation of the $n$-th order. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 241-248. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a2/

[1] Holmgren E., “Sur les systèmes linéaires aux dérivées partielles du premier ordre deux variables indépendantes à caractéristiques réelles et distinetes”, Arkiv f. Mat., Astr. och Fys., 5:1 (1909), 13 pp. (In Swedish) | Zbl

[2] Rieman B., “Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite (Aus dem achten Bande der Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen. 1860.)”, Bernard Riemann's Gesammelte mathematische Werke und wissenschaftlicher Nachlass, eds. R. Dedekind, H. M. Weber, BiblioLife, United States, 2009, 145–164 (In German) | DOI

[3] Bitsadze A. V., Uravneniia matematicheskoi fiziki [Equations of mathematical physics], Nauka, Moscow, 1982, 336 pp. (In Russian) | MR | Zbl

[4] Tikhonov A. N., Samarskii A. A., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1972, 736 pp. (In Russian) | MR | Zbl

[5] Ali Raeisian S. M., “Effective Solution of Riemann Problem for Fifth Order Improperly Elliptic Equation on a Rectangle”, AJCM, 2:4 (2012), 282–286 | DOI | MR

[6] Nikolov A., Popivanov N., “Singular solutions to Protter's problem for (3+1)-D degenerate wave equation” (8–13 June 2012; Sozopol, Bulgaria), AIP Conf. Proc., 1497, 2012, 233–238 | DOI

[7] Korzyuk V. I., Cheb E. S., Le Thi Thu, “Solution of the mixed problem for the biwave equation by the method of characteristics”, Tr. Inst. Mat., 18:2 (2010), 36–54 (In Russian) | MR | Zbl

[8] Mironov A. N., “On the Riemann method for solving the Cauchy problem”, Russian Math. (Iz. VUZ), 49:2 (2005), 32–41 | MR

[9] Radkevich E. V., “On the well-posedness of the Cauchy problem and a mixed problem for a class of hyperbolic systems and equations with constant coefficients and variable multiplicity of characteristics”, Journal of Mathematical Sciences, 149:5 (2008), 1580–1607 | DOI | MR | Zbl

[10] Yakovleva J. O., “The Cauchy problem for the hyperbolic equation and hyperbolic equations system of the third order with nonmultiple characteristics”, Nauchnye vedomosti BelGU. Ser. Matematika. Fizika, 31:11 (2013), 109–117 (In Russian)

[11] Andreev A. A., Yakovleva J. O., “The Cauchy problem for the system of general hyperbolic differential equations of the forth order with nonmultiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 4(37), 7–15 (In Russian) | DOI | Zbl

[12] Petrovsky I. G., Izbrannye trudy. Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaia geometriia [Selected works. Systems of partial differential equations. Algebraic geometry], Nauka, Moscow, 1986, 504 pp. | MR | Zbl

[13] Bellman R., Introduction to matrix analysis, 2nd ed., Reprint of the 1970 Orig., Classics in Applied Mathematics, 19, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997, xxviii+403 pp. | MR | Zbl