Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_2_a2, author = {A. A. Andreev and J. O. Yakovleva}, title = {The {Cauchy} problem for a general hyperbolic differential equation of the $n$-th order}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {241--248}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a2/} }
TY - JOUR AU - A. A. Andreev AU - J. O. Yakovleva TI - The Cauchy problem for a general hyperbolic differential equation of the $n$-th order JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 241 EP - 248 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a2/ LA - ru ID - VSGTU_2016_20_2_a2 ER -
%0 Journal Article %A A. A. Andreev %A J. O. Yakovleva %T The Cauchy problem for a general hyperbolic differential equation of the $n$-th order %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 241-248 %V 20 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a2/ %G ru %F VSGTU_2016_20_2_a2
A. A. Andreev; J. O. Yakovleva. The Cauchy problem for a general hyperbolic differential equation of the $n$-th order. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 2, pp. 241-248. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_2_a2/
[1] Holmgren E., “Sur les systèmes linéaires aux dérivées partielles du premier ordre deux variables indépendantes à caractéristiques réelles et distinetes”, Arkiv f. Mat., Astr. och Fys., 5:1 (1909), 13 pp. (In Swedish) | Zbl
[2] Rieman B., “Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite (Aus dem achten Bande der Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen. 1860.)”, Bernard Riemann's Gesammelte mathematische Werke und wissenschaftlicher Nachlass, eds. R. Dedekind, H. M. Weber, BiblioLife, United States, 2009, 145–164 (In German) | DOI
[3] Bitsadze A. V., Uravneniia matematicheskoi fiziki [Equations of mathematical physics], Nauka, Moscow, 1982, 336 pp. (In Russian) | MR | Zbl
[4] Tikhonov A. N., Samarskii A. A., Uravneniia matematicheskoi fiziki [Equations of Mathematical Physics], Nauka, Moscow, 1972, 736 pp. (In Russian) | MR | Zbl
[5] Ali Raeisian S. M., “Effective Solution of Riemann Problem for Fifth Order Improperly Elliptic Equation on a Rectangle”, AJCM, 2:4 (2012), 282–286 | DOI | MR
[6] Nikolov A., Popivanov N., “Singular solutions to Protter's problem for (3+1)-D degenerate wave equation” (8–13 June 2012; Sozopol, Bulgaria), AIP Conf. Proc., 1497, 2012, 233–238 | DOI
[7] Korzyuk V. I., Cheb E. S., Le Thi Thu, “Solution of the mixed problem for the biwave equation by the method of characteristics”, Tr. Inst. Mat., 18:2 (2010), 36–54 (In Russian) | MR | Zbl
[8] Mironov A. N., “On the Riemann method for solving the Cauchy problem”, Russian Math. (Iz. VUZ), 49:2 (2005), 32–41 | MR
[9] Radkevich E. V., “On the well-posedness of the Cauchy problem and a mixed problem for a class of hyperbolic systems and equations with constant coefficients and variable multiplicity of characteristics”, Journal of Mathematical Sciences, 149:5 (2008), 1580–1607 | DOI | MR | Zbl
[10] Yakovleva J. O., “The Cauchy problem for the hyperbolic equation and hyperbolic equations system of the third order with nonmultiple characteristics”, Nauchnye vedomosti BelGU. Ser. Matematika. Fizika, 31:11 (2013), 109–117 (In Russian)
[11] Andreev A. A., Yakovleva J. O., “The Cauchy problem for the system of general hyperbolic differential equations of the forth order with nonmultiple characteristics”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 4(37), 7–15 (In Russian) | DOI | Zbl
[12] Petrovsky I. G., Izbrannye trudy. Sistemy uravnenii s chastnymi proizvodnymi. Algebraicheskaia geometriia [Selected works. Systems of partial differential equations. Algebraic geometry], Nauka, Moscow, 1986, 504 pp. | MR | Zbl
[13] Bellman R., Introduction to matrix analysis, 2nd ed., Reprint of the 1970 Orig., Classics in Applied Mathematics, 19, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1997, xxviii+403 pp. | MR | Zbl