Comparison of the coordinates of the major planets, Moon, and Sun obtained based
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 121-148.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the comparison of orbit coordinates and elements of large planets, the Moon and the Sun obtained on the basis of a new principle of interaction and of data bank DE405 is made. The space environment is the physical vacuum, whose properties are currently still in the formative stage. Gravity is the result of the interaction of the physical vacuum with material bodies which are moving. Gravity explains by the properties of space compression in relation to moving material bodies. Differential equations of motion of the major planets, the Moon and the Sun have been obtained. It should be noted that the system of differential equations does not contain the mass of bodies and force interactions, in addition, the Earth is considered as a spheroid. By numerical integration of the equations of motion coordinates of the Moon, the Sun and major planets osculating elements of the orbits of the inner planets during 1602–2193 are computed. The results of calculations are compared with the coordinates and orbital elements determined according to the coordinates and velocities DE405. It is shown that in contrast to Newtonian mechanics and relativistic equations of motion, the coordinates of the major planets of the Moon and the Sun, based on the solution of a new system of differential equations, are in satisfactory agreement with the coordinates of these objects obtained using data bank DE405. The resulting equations do not contain terms that take into account the non-sphericity of the Earth and the Moon, being a non-relativistic equations. Based on the research the following conclusions are made: obtained differential equations of motion satisfactorily describe the motion of the major planets, of the Moon and Sun on the time interval of 600 years; these equations are much simpler and more accurate then the differential equations that take into account the relativistic effects.
Mots-clés : orbital elements
Keywords: numerical integration, differential equation of motion.
@article{VSGTU_2016_20_1_a9,
     author = {A. F. Zausaev},
     title = {Comparison of the coordinates of the major planets, {Moon,} and {Sun} obtained based},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {121--148},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a9/}
}
TY  - JOUR
AU  - A. F. Zausaev
TI  - Comparison of the coordinates of the major planets, Moon, and Sun obtained based
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 121
EP  - 148
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a9/
LA  - ru
ID  - VSGTU_2016_20_1_a9
ER  - 
%0 Journal Article
%A A. F. Zausaev
%T Comparison of the coordinates of the major planets, Moon, and Sun obtained based
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 121-148
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a9/
%G ru
%F VSGTU_2016_20_1_a9
A. F. Zausaev. Comparison of the coordinates of the major planets, Moon, and Sun obtained based. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 121-148. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a9/

[1] Chebotarev G. A., Analytical and Numerical Methods of Celestial Mechanics, American Elsevier Publishing Co., Inc., 1967, xviii+331 pp. | MR | MR | Zbl

[2] Subbotin M. F., Vvedenie v teoreticheskuiu astronomiiu [Introduction to theoretical astronomy], Nauka, Moscow, 1968, 800 pp. (In Russian)

[3] Le Verrier U. J., Theorie du movement de Mercure, Annales de l'Observatoire imperial de Paris, 5, Mallet-Bachelier, Paris, 1859, 195 pp.

[4] Roseveare N. T., Mercury's Perihelion, from Le Verrier to Einstein, Clarendon, Oxford, 1982, 208 pp. | Zbl

[5] Zausaev A. F., “Theory of motion of $n$ material bodies, based on a new interaction principle”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2006, no. 43, 132–139 | DOI

[6] Bogorodsky A. F., Vsemirnoe tiagotenie [Universal Gravitation], Naukova Dumka, Kiev, 1971, 352 pp. (In Russian)

[7] Brumberg V. A., Reliativistskaia nebesnaia mekhanika [Relativistic Celestial Mechanics], Nauka, Moscow, 1972, 384 pp. (In Russian) | MR

[8] Rashevskii P. K., Rimanova geometriia i tenzornyi analiz [Riemannian geometry and tensor analysis], Nauka, Moscow, 1967, 644 pp. (In Russian) | MR

[9] Newhall X. X., Standish E. M., Williams J. G., “DE 102: A numerically integrated ephemeris of the moon and planets spanning forty-four centuries”, Astronomy and Astrophysics, 125:1 (1983), 150–167 | Zbl

[10] Zausaev A. F., “A study of the orbital evolution of 10 short-period comets by solving differential equations of motion obtained on the basis of a new principle of interaction”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2007, no. 1(14), 79–84 (In Russian) | DOI

[11] Riemann B., “Natural Philosophy”, Sochineniia [Collected Works], OGIZ, GITTL, Moscow, Leningrad, 1948, 467–477 (In Russian)

[12] Poincaré A., “The Last Thought”, O nauke [On Science. Collected Works], Nauka, Moscow, 1983, 407–520 (In Russian) | MR

[13] Vizgin V. P., Relyativistskaya teoriya tyagoteniya (Istoki i formirovanie, 1900-1915) [The relativistic theory of gravitation. Sources and formation, 1900-1915], Nauka, Moscow, 1981, 352 pp. (In Russian) | MR | Zbl

[14] Zausaev A. F., “The Investigation of the Motion of Planets, the Moon, and the Sun Based on a New Principle of Interaction”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(36) (2014), 118–131 (In Russian) | DOI | Zbl

[15] Zausaev A. F., Zausaev A. A., Matematicheskoe modelirovanie orbital'noi evoliutsii malykh tel Solnechnoi sistemy [Mathematical modelling of orbital evolution of small bodies of the Solar system], Moscow, Mashinostroenie-1, 2008, 250 pp. (In Russian)

[16] Pitjeva E. V., “Modern Numerical Theories of the Motion of the Sun, Moon and Major Planets”, Tr. Inst. Prikl. Astron. Ross. Akad. Nauk, 10 (2004), 112–134 (In Russian)

[17] Krasinskii G. A., Piteva E. V., Sveshnikov M. L., Sveshnikova E. S., “Improvement of the ephemerides of the inner planets and the moon using radar, laser, and meridian measurements during 1961-1980”, Institut Teoreticheskoi Astronomii, Biulleten', 15:3 (1982), 145–164 (In Russian) ; Кислик М. Д., Колюка Ю. Ф., Котельников В. А., Петров Г. М., Тихонов В. Ф., “Единая релятивистская теория движения внутренних планет Солнечной системы. Релятивистские эффекты при определении орбит планет по радиолокационным наблюдениям”, Научная сессия Отделения общей физики и астрономии и Отделения ядерной физики Академии наук СССР (26–27 ноября 1980 г.), УФН, 134:1 (1981), 165–166 | DOI

[18] “A Unified Relativistic Theory of the Motion of the Inner Planets of the Solar System”, Proceedings of the USSR Academy of Sciences, 255:3 (1980), 545–547 (In Russian) | DOI | DOI

[19] Kislik M. D., Kolyuka Yu. F., Kotel'nikov V. A., Tikhonov V. F., “A Unified Relativistic Theory of the Motion of the Inner Planets of the Solar System. Relativistic Effects in Determination of the Orbits of the Planets from Radar Observations”, Sov. Phys. Usp., 24:1 (1981), 437–438 | DOI | DOI

[20] Standish E. M., JPL Planetary and Lunar Ephemerides, DE405/LE405, Jet Propulsion Laboratory Interoffice Memorandum 312.F-98-048, 1998, 1–7 pp.

[21] Everhart E., “Implicit single-sequence methods for integrating orbits”, Celestial Mechanics, 10:1 (1974), 35–55 | DOI | MR | Zbl

[22] Zausaev A. F., Zausaev A. A., Ol'khin A. G., “The numerical integration of the equations of motion for large planets (Mercury and Pluto) and the Moon with the radar observations”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2004, no. 26, 43–47 (In Russian) | DOI