Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_1_a8, author = {A. V. Eremin and I. V. Kudinov and V. V. Zhukov}, title = {A method for solving problems of~heat transfer during the~flow of~fluids in~a plane channel}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {109--120}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a8/} }
TY - JOUR AU - A. V. Eremin AU - I. V. Kudinov AU - V. V. Zhukov TI - A method for solving problems of~heat transfer during the~flow of~fluids in~a plane channel JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 109 EP - 120 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a8/ LA - ru ID - VSGTU_2016_20_1_a8 ER -
%0 Journal Article %A A. V. Eremin %A I. V. Kudinov %A V. V. Zhukov %T A method for solving problems of~heat transfer during the~flow of~fluids in~a plane channel %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 109-120 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a8/ %G ru %F VSGTU_2016_20_1_a8
A. V. Eremin; I. V. Kudinov; V. V. Zhukov. A method for solving problems of~heat transfer during the~flow of~fluids in~a plane channel. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 109-120. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a8/
[1] Kudinov V. A., Stefanyuk E. V., “Analytical solution method for heat conduction problems based on the introduction of the temperature perturbation front and additional boundary conditions”, Journal of Engineering Physics and Thermophysics, 2009:3, 537–555 | DOI | MR
[2] Stefanyuk E. V., Kudinov V. A., “Approximate analytic solution of heat conduction problems with a mismatch between initial and boundary conditions”, Russian Math. (Iz. VUZ), 54:4 (2010), 55–61 | DOI | MR | Zbl
[3] Kudinov V. A., Kudinov I. V., Skvortsova M. P., “Generalized functions and additional boundary conditions in heat conduction problems for multilayered bodies”, Comput. Math. Math. Phys., 55:4 (2015), 666–676 | DOI | DOI | MR | Zbl | Zbl
[4] Timoshpol'skii V. I., Postol'nik Yu. S., Andrianov D. N., Teoreticheskie osnovy teplofiziki i termomekhaniki v metallurgii [Theoretical Foundations of Thermophysics and Thermomechanics in Metallurgy], Bel. navuka, Minsk, 2006, 560 pp. (In Russian)
[5] Fedorov F. M., Granichnyi metod resheniia prikladnykh zadach matematicheskoi fiziki [A Boundary Method for Solving Applied Problems of Mathematical Physics], Nauka, Novosibirsk, 2000, 220 pp. (In Russian) | MR
[6] Glazunov Yu. T., Variatsionnye metody [Variational Methods], Reguliarnaia i khaoticheskaia dinamika; Institut komp'iuternykh issledovanii, Moscow, Izhevsk, 2006, 470 pp. (In Russian)
[7] Petukhov B. S., Teploobmen i soprotivlenie pri laminarnom techenii zhidkosti v trubakh [Heat transfer and resistance at laminar flow of fluids in pipes], Energiia, Moscow, 1967, 412 pp. (In Russian)
[8] Tsoi P. V., Sistemnye metody rascheta kraevykh zadach teplomassoperenosa [System methods for calculating the heat and mass transfer boundary value problems], Moscow Power Engineering Institute Publ., Moscow, 2005, 568 pp. (In Russian)