A study of steady creep of layered metal-composite beams of laminated-fibrous structures
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 85-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

Steady state creep of a hybrid metal-composite laminated bending beams of irregular patterns is considered. Beams consist of walls and load-bearing layers, attached at the top and bottom (shelves). The shelves are reinforced with fibers in the longitudinal direction, and the walls are reinforced either longitudinally or cross in the plane. Under the hypotheses of the Timoshenko theory the boundary value problem is formulated for the calculation of the considered beams, which allows taking into account the weakened resistance of the walls of the transverse shifts. The simple iteration method based on the idea of the secant modulus method is applied for linearization of the problem. The mechanical behavior of reinforced and unreinforced double seat beams and cantilevers in conditions of steady creep under the action of uniformly distributed transverse load is investigated. Cross sections of beams are I-shaped. It is shown that for homogeneous I-beams, the classical Bernoulli theory does not guarantee the calculated results in compliance within 20% accuracy, which is considered to be acceptable if the width of the shelf is comparable with the height of cross sections of beams. In the cases of metal-composite beams, the classical theory becomes generally unacceptable, because it lowers by several orders of magnitude the compliance of such structures in conditions of steady creep. It is demonstrated that the rate of shear strain, actively developing in their walls, must be considered. The consideration of these strain rates within the framework of the Timoshenko theory led to the discovery of new mechanisms of deformation of laminated beams which the classical theory does not find. It is shown that the change in mechanism of deformation can occur by increasing the density of reinforcement of shelves or walls.
Mots-clés : metal-composites
Keywords: reinforcement, laminated beams, steady state creep, Timoshenko theory, Bernoulli theory, non-uniqueness of solution.
@article{VSGTU_2016_20_1_a7,
     author = {A. P. Yankovskii},
     title = {A study of steady creep of layered metal-composite beams of laminated-fibrous structures},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {85--108},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a7/}
}
TY  - JOUR
AU  - A. P. Yankovskii
TI  - A study of steady creep of layered metal-composite beams of laminated-fibrous structures
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 85
EP  - 108
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a7/
LA  - ru
ID  - VSGTU_2016_20_1_a7
ER  - 
%0 Journal Article
%A A. P. Yankovskii
%T A study of steady creep of layered metal-composite beams of laminated-fibrous structures
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 85-108
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a7/
%G ru
%F VSGTU_2016_20_1_a7
A. P. Yankovskii. A study of steady creep of layered metal-composite beams of laminated-fibrous structures. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 85-108. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a7/

[1] Karkauskas R., Krutinis A., Atkočiūnas J., Kalanta S., Nagevičius J., Stroitel'naia mekhanika. Programmy i resheniia zadach na EVM [ Structural Mechanics. Programs and Solution of Problems by PC], Stroiizdat, Moscow, 1990, 360 pp. (In Russian)

[2] Nemirovskii Yu. V., Mishchenko A. V., Vokhmianin I. T., Ratsional'noe i optimal'noe proektirovanie sloistykh sterzhnevykh sistem [Rational and optimal design of laminated beam systems], Novosibirsk, 2004, 488 pp. (In Russian)

[3] Kompozitsionnye materialy [Composite Materials], ed. V. V. Vasil'ev, Iu. M. Tarnopol'skii, Mashinostroenie, Moscow, 1990, 512 pp. (In Russian)

[4] Kachanov L. M., Teoriia polzuchesti [Theory of Creep], Fizmatgiz, Moscow, 1960, 456 pp. (In Russian)

[5] Rabotnov Yu. N., Creep problems in structural members, North-Holland Publ. Co., Amsterdam, London, 1969, xiv+822 pp. | Zbl

[6] Radchenko V. P., Eremin Yu. A., Reologicheskoe deformirovanie i razrushenie materialov i elementov konstruktsii [ Rheological Deformation and Fracture of Materials and Structural Element], Mashinostroenie-1, Moscow, 2004, 264 pp. (In Russian)

[7] Mishchenko A. V., Nemirovskii Yu. V., “Creep of the homogeneous and layered beams on the basis of a three-component model”, Izv. vuzov. Stroitel'stvo, 2009, no. 5, 16–24 (In Russian)

[8] Feodos'ev V. I., Soprotivlenie materialov [Strength of materials], Nauka, Moscow, 1986, 512 pp. (In Russian)

[9] Yankovskii A. P., “An analysis of the established creep of reinforced metalocomposite wall-beams in view of the weakened resistance to in-plane shear”, Mekhanika kompozitsionnykh materialov i konstruktsii [Journal on Composite Mechanics and Design], 18:3 (2012), 301–319 (In Russian)

[10] Yuzikov V. P., Panasenko N. N., Stroitel'naia mekhanika tonkostennykh sterzhnei [Construction mechanics of thin walled rods], Volgograd Science Publ., Volgograd, 2013, 361 pp. (In Russian)

[11] Vasil'ev V. V., Mekhanika konstruktsii iz kompozitsionnykh materialov [Mechanics of Composite Structures], Mashinostroenie, Moscow, 1988, 272 pp. (In Russian)

[12] Washizu K., Variational Methods in Elasticity and Plasticity, Pergamon Press, New York, 1982, xv+630 pp. | MR | Zbl

[13] Yankovskii A. P., “Modelirovanie mekhanicheskogo povedeniya perekrëstno armirovannykh metallokompozitov v usloviyakh ustanovivsheisya polzuchesti”, Mekhanika kompozitsionnykh materialov i konstruktsii, 17:3 (2011), 362–384

[14] Pisarenko G. S., Mozharovskii N. S., Uravneniya i kraevye zadachi teorii plastichnosti i polzuchesti. Spravochnoe posobie, Naukova dumka, Kiev, 1981, 496 pp. (In Russian) | MR

[15] Kompozitsionnye materialy [Composite Materials], ed. D. M. Karpinos, Naukova dumka, Kiev, 1985, 592 pp. (In Russian)

[16] Nikitenko A. F., Polzuchest' i dlitel'naia prochnost' metallicheskikh materialov [Creep and Long-Term Strength of Metallic Materials], Novosibirsk, 1997, 278 pp. (In Russian)

[17] Perelmuter A. V., Slivker V., “Stability of inelastic systems”, Handbook of Mechanical Stability in Engineering, v. 3, More Challenges in Stability Theories and Codification Problems, World Scientific Publ., 2013, 1189–1271 | DOI

[18] Yankovskii A. P., “Assessing ultimate loading levels of shells of revolution with complex reinforcement under creep”, Problemy prochnosti i plastichnosti [Problems of Strength and Plasticity], 2010, no. 72, 63–72 (In Russian)