Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_1_a6, author = {F. G. Khushtova}, title = {Cauchy problem for a parabolic equation with {Bessel} operator and {Riemann--Liouville} partial derivative}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {74--84}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a6/} }
TY - JOUR AU - F. G. Khushtova TI - Cauchy problem for a parabolic equation with Bessel operator and Riemann--Liouville partial derivative JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 74 EP - 84 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a6/ LA - ru ID - VSGTU_2016_20_1_a6 ER -
%0 Journal Article %A F. G. Khushtova %T Cauchy problem for a parabolic equation with Bessel operator and Riemann--Liouville partial derivative %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 74-84 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a6/ %G ru %F VSGTU_2016_20_1_a6
F. G. Khushtova. Cauchy problem for a parabolic equation with Bessel operator and Riemann--Liouville partial derivative. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 74-84. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a6/
[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie [Fractional calculus and its applications], Fizmatlit, Moscow, 2003, 272 pp. (In Russian) | Zbl
[2] Pskhu A. B., Uravneniia v chastnykh proizvodnykh drobnogo poriadka [Partial differential equations of fractional order], Nauka, Moscow, 2005, 199 pp. (In Russian) | MR | Zbl
[3] Tersenov S. A., Parabolicheskie uravneniia s meniaiushchimsia napravleniem vremeni [Parabolic equations with varying time direction], Nauka, Moscow, 1985, 105 pp. (In Russian) | MR | Zbl
[4] Arena O., “On a Singular Parabolic Equation Related to Axially Symmetric Heat Potentials”, Annali di Matematica Pura ed Applicata, 105:1 (1975), 347–393 | DOI | MR | Zbl
[5] Voroshilov A. A., Kilbas A. A., “A Cauchy-type problem for the diffusion-wave equation with Riemann-Liouville partial derivative”, Dokl. Math., 73:1 (2006), 6–10 | DOI | MR | Zbl
[6] Gekkieva S. H., “The Cauchy problem for the generalized transmission equation with a fractional derivative with respect to the time”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 5:1 (2000), 16–19 (In Russian)
[7] Voroshilov A. A., Kilbas A. A., “The Cauchy problem for the diffusion-wave equation with the Caputo partial derivative”, Differ. Equations, 42:5 (2006), 638–649 | DOI | MR | Zbl
[8] Kochubej A. N., “A Cauchy problem for evolution equations of fractional order”, Differ. Equations, 25:8 (1989), 967–974 | MR | Zbl
[9] Kochubei A. N., “Fractional-order diffusion”, Differ. Equations, 26:4 (1990), 485–492 | MR | Zbl | Zbl
[10] Pskhu A. V., “The fundamental solution of a diffusion-wave equation of fractional order”, Izv. Math., 73:2 (2009), 351–392 | DOI | DOI | MR | Zbl
[11] Mamchuev M. O., “Modified Cauchy-type problem for a loaded second-order parabolic equation with constant coefficients”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 14:2 (2012), 22–28 (In Russian)
[12] Metzler R., Glöckle W. G., Nonnenmacher T. F., “Fractional model equation for anomalous diffusion”, Physica A: Statistical Mechanics and its Applications, 211:1 (1994), 13–24 | DOI
[13] Giona M., Roman H. E., “Fractional diffusion equation on fractals: one-dimensional case and asymptotic behavior”, Phys. A: Math. Gen., 25:8 (1992), 2093–2105 | DOI | MR | Zbl
[14] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Physics Reports, 339:1 (2000), 1–77 | DOI | MR | Zbl
[15] Metzler R., Klafter J., “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, Phys. A: Math. Gen., 37:31 (2004), R161–R208 | DOI | MR | Zbl
[16] Uchaikin V. V., “Cosmic ray anisotropy in fractional differential models of anomalous diffusion”, JETP, 116:6 (2013), 897–903 | DOI | DOI
[17] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers, Nonlinear Physical Science, I, Background and Theory, Springer, Berlin, 2013. xii+385 pp | DOI | MR | Zbl
[18] Gorenflo R., Luchko Y., Mainardi F., “Analytical properties and applications of the Wright function”, Fractional Calculus and Applied Analysis, 2:4 (1999), 383–414, arXiv: math-ph/0701069 | MR | Zbl
[19] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and series, v. 3, More special functions, Gordon and Breach Science Publ., New York, 1990, 800 pp. | MR | MR | Zbl | Zbl
[20] Kilbas A. A., Saigo M., H-Transform. Theory and Applications, Analytical Methods and Special Functions, 9, Chapman and Hall, Boca Raton, etc., 2004, xii+389 pp. | MR | Zbl
[21] Marichev O. I., Metod vychisleniia integralov ot spetsial'nykh funktsii (teoriia i tablitsy formul) [A method of calculating integrals of special functions. (Theory and tables of formulas)], Nauka i tekhnika, Minsk, 1978, 312 pp. (In Russian) | MR | Zbl
[22] Kuznetsov D. S., Spetsial'nye funktsii [Special functions], Vysshaia shkola, Moscow, 1962, 248 pp. (In Russian) | MR | Zbl
[23] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II., Bateman Manuscript Project, McGraw-Hill Book Co., New York, Toronto, London, 1953, xvii+396 pp. | Zbl
[24] Khushtova F. G., “Fundamental solution of the model equation of anomalous diffusion of fractional order”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 722–735 (In Russian) | DOI