Cauchy problem for a parabolic equation with Bessel operator and Riemann--Liouville partial derivative
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 74-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper Cauchy problem for a parabolic equation with Bessel operator and with Riemann–Liouville partial derivative is considered. The representation of the solution is obtained in terms of integral transform with Wright function in the kernel. It is shown that when this equation becomes the fractional diffusion equation, obtained solution becomes the solution of Cauchy problem for the corresponding equation. The uniqueness of the solution in the class of functions that satisfy the analogue of Tikhonov condition is proved.
Mots-clés : fractional calculus, parabolic equation
Keywords: Riemann–Liouville integral-differential operator, differential equations with partial fractional derivatives, Bessel operator, the modified Bessel function of the first kind, Wright function, the integral transform with Wright function in the kernel, Fox $H$-function, Cauchy problem, Tikhonov condition.
@article{VSGTU_2016_20_1_a6,
     author = {F. G. Khushtova},
     title = {Cauchy problem for a parabolic equation with {Bessel} operator and {Riemann--Liouville} partial derivative},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {74--84},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a6/}
}
TY  - JOUR
AU  - F. G. Khushtova
TI  - Cauchy problem for a parabolic equation with Bessel operator and Riemann--Liouville partial derivative
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 74
EP  - 84
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a6/
LA  - ru
ID  - VSGTU_2016_20_1_a6
ER  - 
%0 Journal Article
%A F. G. Khushtova
%T Cauchy problem for a parabolic equation with Bessel operator and Riemann--Liouville partial derivative
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 74-84
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a6/
%G ru
%F VSGTU_2016_20_1_a6
F. G. Khushtova. Cauchy problem for a parabolic equation with Bessel operator and Riemann--Liouville partial derivative. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 74-84. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a6/

[1] Nakhushev A. M., Drobnoe ischislenie i ego primenenie [Fractional calculus and its applications], Fizmatlit, Moscow, 2003, 272 pp. (In Russian) | Zbl

[2] Pskhu A. B., Uravneniia v chastnykh proizvodnykh drobnogo poriadka [Partial differential equations of fractional order], Nauka, Moscow, 2005, 199 pp. (In Russian) | MR | Zbl

[3] Tersenov S. A., Parabolicheskie uravneniia s meniaiushchimsia napravleniem vremeni [Parabolic equations with varying time direction], Nauka, Moscow, 1985, 105 pp. (In Russian) | MR | Zbl

[4] Arena O., “On a Singular Parabolic Equation Related to Axially Symmetric Heat Potentials”, Annali di Matematica Pura ed Applicata, 105:1 (1975), 347–393 | DOI | MR | Zbl

[5] Voroshilov A. A., Kilbas A. A., “A Cauchy-type problem for the diffusion-wave equation with Riemann-Liouville partial derivative”, Dokl. Math., 73:1 (2006), 6–10 | DOI | MR | Zbl

[6] Gekkieva S. H., “The Cauchy problem for the generalized transmission equation with a fractional derivative with respect to the time”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 5:1 (2000), 16–19 (In Russian)

[7] Voroshilov A. A., Kilbas A. A., “The Cauchy problem for the diffusion-wave equation with the Caputo partial derivative”, Differ. Equations, 42:5 (2006), 638–649 | DOI | MR | Zbl

[8] Kochubej A. N., “A Cauchy problem for evolution equations of fractional order”, Differ. Equations, 25:8 (1989), 967–974 | MR | Zbl

[9] Kochubei A. N., “Fractional-order diffusion”, Differ. Equations, 26:4 (1990), 485–492 | MR | Zbl | Zbl

[10] Pskhu A. V., “The fundamental solution of a diffusion-wave equation of fractional order”, Izv. Math., 73:2 (2009), 351–392 | DOI | DOI | MR | Zbl

[11] Mamchuev M. O., “Modified Cauchy-type problem for a loaded second-order parabolic equation with constant coefficients”, Doklady Adygskoi (Cherkesskoi) Mezhdunarodnoi akademii nauk, 14:2 (2012), 22–28 (In Russian)

[12] Metzler R., Glöckle W. G., Nonnenmacher T. F., “Fractional model equation for anomalous diffusion”, Physica A: Statistical Mechanics and its Applications, 211:1 (1994), 13–24 | DOI

[13] Giona M., Roman H. E., “Fractional diffusion equation on fractals: one-dimensional case and asymptotic behavior”, Phys. A: Math. Gen., 25:8 (1992), 2093–2105 | DOI | MR | Zbl

[14] Metzler R., Klafter J., “The random walk's guide to anomalous diffusion: a fractional dynamics approach”, Physics Reports, 339:1 (2000), 1–77 | DOI | MR | Zbl

[15] Metzler R., Klafter J., “The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics”, Phys. A: Math. Gen., 37:31 (2004), R161–R208 | DOI | MR | Zbl

[16] Uchaikin V. V., “Cosmic ray anisotropy in fractional differential models of anomalous diffusion”, JETP, 116:6 (2013), 897–903 | DOI | DOI

[17] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers, Nonlinear Physical Science, I, Background and Theory, Springer, Berlin, 2013. xii+385 pp | DOI | MR | Zbl

[18] Gorenflo R., Luchko Y., Mainardi F., “Analytical properties and applications of the Wright function”, Fractional Calculus and Applied Analysis, 2:4 (1999), 383–414, arXiv: math-ph/0701069 | MR | Zbl

[19] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integrals and series, v. 3, More special functions, Gordon and Breach Science Publ., New York, 1990, 800 pp. | MR | MR | Zbl | Zbl

[20] Kilbas A. A., Saigo M., H-Transform. Theory and Applications, Analytical Methods and Special Functions, 9, Chapman and Hall, Boca Raton, etc., 2004, xii+389 pp. | MR | Zbl

[21] Marichev O. I., Metod vychisleniia integralov ot spetsial'nykh funktsii (teoriia i tablitsy formul) [A method of calculating integrals of special functions. (Theory and tables of formulas)], Nauka i tekhnika, Minsk, 1978, 312 pp. (In Russian) | MR | Zbl

[22] Kuznetsov D. S., Spetsial'nye funktsii [Special functions], Vysshaia shkola, Moscow, 1962, 248 pp. (In Russian) | MR | Zbl

[23] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II., Bateman Manuscript Project, McGraw-Hill Book Co., New York, Toronto, London, 1953, xvii+396 pp. | Zbl

[24] Khushtova F. G., “Fundamental solution of the model equation of anomalous diffusion of fractional order”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 19:4 (2015), 722–735 (In Russian) | DOI