On the determination of pure quantum states by the homodyne detection
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 33-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

The methods of reconstruction of the wave function of a pure state of a quantum system by quadrature distribution measured experimentally by the homodyne detection are considered. Such distribution is called optical tomogram of a state and containes one parameter $\theta$. Wave function of a state is determined exactly by its optical tomogram if last one is known for all $\theta$. But one can obtain optical tomogram from experiment of homodyne detection only for discrete number of $\theta$. We introduce some approximate methods of reconstructing the state by such information about its optical tomogram.
Keywords: quantum tomography, quantum state, density operator, wave function.
@article{VSGTU_2016_20_1_a2,
     author = {A. I. Dnestryan},
     title = {On the determination of pure quantum states by the homodyne detection},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {33--42},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a2/}
}
TY  - JOUR
AU  - A. I. Dnestryan
TI  - On the determination of pure quantum states by the homodyne detection
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 33
EP  - 42
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a2/
LA  - ru
ID  - VSGTU_2016_20_1_a2
ER  - 
%0 Journal Article
%A A. I. Dnestryan
%T On the determination of pure quantum states by the homodyne detection
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 33-42
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a2/
%G ru
%F VSGTU_2016_20_1_a2
A. I. Dnestryan. On the determination of pure quantum states by the homodyne detection. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 33-42. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a2/

[1] Vogel K., Risken H., “Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase”, Phys. Rev. A, 40:5 (1989), 2847–2855 | DOI

[2] Smithey D. T., Beck M., Raymer M. G., Faridani A., “Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum”, Phys. Rev. Lett., 70:9 (1993), 1244–1247 | DOI

[3] Mancini S., Man'ko V. I., Tombesi P., “Symplectic tomography as classical approach to quantum systems”, Phys. Lett. A, 213:1–2 (1996), 1–6 | DOI | MR | Zbl

[4] Amosov G. G., Dnestryan A. I., “On the spectrum of a family of integral operators defining the quantum tomogram”, Trudy MFTI, 3:1 (2011), 5–9 (In Russian)

[5] Schleich W. P., Quantum Optics in Phase Space, Verlag, Berlin, 2001, xx+695 pp. | DOI

[6] Pauli W., “Die allgemeinen Prinzipien der Wellenmechanik”, Handbuch Physik, 24, Tl. 1 (1933), 83–272; ; Pauli W., “Die allgemeinen Prinzipien der Wellenmechanik”, Die allgemeinen Prinzipien der Wellenmechanik, Neu herausgegeben und mit historischen Anmerkungen versehen von Norbert Straumann, ed. Professor Dr. Norbert Straumann, Springer, Berlin, 1990, 21–192 | Zbl | DOI

[7] Reichenbach H., Philosophic Foundations of Quantum Mechanics, University of California Press, Berkeley and Los Angeles, 1944, x+182 pp.

[8] Vogt A., “Position and Momentum Distributions do not Determine the Quantum Mechanical State”, Mathematical Foundations of Quantum Theory, Academic Press, New York, 1978, 365–372 | DOI | MR

[9] Freyberger M., Bardroff P. J., Leichle C., Schrade G., Schleich W. P., “The art of measuring quantum states”, Physics World, 10:11 (1997), 41–46 | DOI

[10] Schleich W. P., Raymer M. G., “Special issue on quantum state preparation and measurement”, J. Mod. Opt., 1997, no. 44, 2021–2022 | DOI

[11] Leibfried D., Pfau T., Monroe C., “Shadows and Mirrors: Reconstructing Quantum States of Atom Motion”, Physics Today, 51:4 (1998), 22–28 | DOI

[12] Welsch D.-G., Vogel W., Opatrný T., “II Homodyne Detection and Quantum-State Reconstruction”, Progress in Optics, v. 39, ed. E. Wolf, North-Holland, Amsterdam, 1999, 63–211 | DOI | MR

[13] Radon J., “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Nat. kl., 69 (1917), 262–277 Available at (February 24, 2016); ; Radon J., “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten”, Proceedings of Symposia in Applied Mathematics, v. 27, ed. Lawrence A. Shepp, Amer. Math. Soc., Providence, 1983, 71–86 http://people.csail.mit.edu/bkph/courses/papers/Exact_Conebeam/Radon_Deutsch_1917.pdf | MR | Zbl | DOI

[14] D'Ariano G. M., Mancini S., Man'ko V. I., Tombesi P., “Reconstructing the density operator by using generalized field quadratures”, Quantum Semiclass. Opt., 8:5 (1996), 1017–1027 | DOI | MR

[15] Leonhardt U., Paul H., D'Ariano G. M., “Tomographic reconstruction of the density matrix via pattern functions”, Phys. Rev. A, 52:6 (1995), 4899–4907 | DOI | MR

[16] Leonhardt U., Munroe M., “Number of phases required to determine a quantum state in optical homodyne tomography”, Phys. Rev. A, 54:4 (1996), 3682–3684 | DOI | MR

[17] Orłowski A., Paul H., “Phase retrieval in quantum mechanics”, Phys. Rev. A, 50:2 (1994), R921–R924 | DOI

[18] Amosov G. G., Dnestryan A. I., “Reconstruction of a pure state from incomplete information on its optical tomogram”, Russian Math. (Iz. VUZ), 57:3 (2013), 51–55 | DOI | MR | Zbl