Mathematical modeling of hereditary elastically deformable body on the basis
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 167-194.

Voir la notice de l'article provenant de la source Math-Net.Ru

The standard one-dimensional generalized model of a viscoelastic body and some of its special cases—Voigt, Maxwell, Kelvin and Zener models are considered. Based on the V. Volterra hypothesis of hereditary elastically deformable solid body and the method of structural modeling the fractional analogues of classical rheological models listed above are introduced. It is shown that if an initial V. Volterra constitutive relation uses the Abel-type kernel, the fractional derivatives arising in constitutive relations will be the Rieman–Liouville derivatives on the interval. It is noted that in many works deal with mathematical models of hereditary elastic bodies, the authors use some fractional derivatives, convenient for the integral transforms, for example, the Riemann–Liouville derivatives on the whole real number line or Caputo derivatives. The explicit solutions of initial value problems for the model fractional differential equations are not given. The correctness of the Cauchy problem is shown for some linear combinations of functions of stress and strain for constitutive relations in differential form with Riemann–Liouville fractional derivatives. Explicit solutions of the problem of creep at constant stress in steps of loading and unloading are found. The continuous dependence of the solutions on the model fractional parameter is proved, in the sense that these solutions transform into a well-known solutions for classical rheological models when $\alpha\to1$. We note the persistence of instantaneous elastic deformation in the loading and unloading process for fractional Maxwell, Kelvin and Zener models. The theorems on the existence and asymptotic properties of the solutions of creep problem are presented and proved. The computer system identifying the parameters of the fractional mathematical model of the viscoelastic body is developed, the accuracy of the approximations for experimental data and visualization solutions of creep problems is evaluated. Test data with constant tensile stresses of polyvinyl chloride tube were used for experimental verification of the proposed models. The results of the calculated data based on the fractional analog of Voigt model are presented. There is a satisfactory agreement between the calculated and experimental data.
Keywords: structural models, rheological models, viscoelasticity, creep, the operators of Riemann–Liouville fractional integration and differentiation, fractional integral and differential equations, parametric identification, experimental data, Mittag–Leffler type function.
Mots-clés : fractional calculus
@article{VSGTU_2016_20_1_a12,
     author = {E. N. Ogorodnikov and V. P. Radchenko and L. G. Ungarova},
     title = {Mathematical modeling of hereditary elastically deformable body on the basis},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {167--194},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a12/}
}
TY  - JOUR
AU  - E. N. Ogorodnikov
AU  - V. P. Radchenko
AU  - L. G. Ungarova
TI  - Mathematical modeling of hereditary elastically deformable body on the basis
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2016
SP  - 167
EP  - 194
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a12/
LA  - ru
ID  - VSGTU_2016_20_1_a12
ER  - 
%0 Journal Article
%A E. N. Ogorodnikov
%A V. P. Radchenko
%A L. G. Ungarova
%T Mathematical modeling of hereditary elastically deformable body on the basis
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2016
%P 167-194
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a12/
%G ru
%F VSGTU_2016_20_1_a12
E. N. Ogorodnikov; V. P. Radchenko; L. G. Ungarova. Mathematical modeling of hereditary elastically deformable body on the basis. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 167-194. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a12/

[1] Rabotnov Yu. N., Creep problems in structural members, North-Holland Publ. Co., Amsterdam, London, 1969, xiv+822 pp. | Zbl

[2] Rabotnov Yu. N., Mekhanika deformiruemogo tverdogo tela [Mechanics of a deformable rigid body], Nauka, Moscow, 1988, 712 pp. (In Russian) | Zbl

[3] Malinin N. N., Prikladnaia teoriia plastichnosti i polzuchesti [Applied theory of plasticity and creep], Mashinostroenie, Moscow, 1975, 400 pp. (In Russian)

[4] Elements of hereditary solid mechanics, Mir Publ., 1980, 388 pp. | Zbl

[5] Nakhushev A. M., Drobnoe ischislenie i ego primenenie [Fractional calculus and its applications], Fizmatlit, Moscow, 2003, 272 pp. (In Russian) | Zbl

[6] Nakhushev A. M., Uravneniia matematicheskoi biologii [Equations of mathematical biology], Vysshaia shkola, Moscow, 1995, 301 pp. (In Russian) | Zbl

[7] Uchaikin V. V., “Heredity and Nonlocality”, Fractional Derivatives for Physicists and Engineers, v. 1, Background and Theory, Springer Berlin Heidelberg, Berlin, 2013, 3–58 ; | DOI | DOI

[8] Volterra V., “Sulle equazioni integro-differenziali della teoria dell'elasticità”, Rend. Acc. Naz. Lincei, 18 (1909), 295–301 | Zbl

[9] Volterra V., Theory of functionals and of integral and integro-differential equations, Dover Publ., Inc., New York, 1959, 226 pp. | Zbl

[10] Boltzmann L., “Theorie der elastischen Nachwirkung (Theory of elastic after effects)”, Wien. Ber., 70 (1874), 275–306 ; Boltzman L., “Zur Theorie der elastischen Nachwirkung (On the elastic after effect)”, Pogg. Ann. (2), 5 (1878), 430–432 ; Boltzman L., “Zur Theorie der elastischen Nachwirkung”, Wissenschaftliche Abhandlungen, v. 2, Cambridge Library Collection, ed. Friedrich Hasenöhrl, Cambridge University Press, Cambridge, 2012, 318–320 | Zbl | Zbl | DOI

[11] Duffing G., “Elastizität und Reibung beim Riementrieb (Elasticity and friction of the belt drive)”, Forschung auf dem Gebiet des Ingenieurwesens A, 2:3 (1931), 99–104 | DOI | Zbl

[12] Gemant A., “A Method of Analyzing Experimental Results Obtained from Elasto-Viscous Bodies”, J. Appl. Phys., 7 (1936), 311–317 | DOI

[13] Bronskij A. P., “Residual effect in rigid bodies”, Prikl. Mat. Mekh., 5:1 (1941), 31–56 (In Russian) | Zbl

[14] Slonimsky G. L., “On the laws of deformation of real materials. I. The theories of Maxwell and Boltzmann”, Acta physicochim. URSS, 12 (1940), 99–128 | Zbl

[15] Ishlinsky A. Yu., “On equations of spatial deformation of not completely elastic and elastoplastic bodies”, Izv. AN SSSR, OTN, 1945, no. 3, 250–260 (In Russian) | Zbl

[16] Rzhanitsyn A. R., Nekotorye voprosy mekhaniki sistem, deformiruiushchikhsia vo vremeni [Some Problems in the Mechanics of Time-Deformable Systems], Gostekhizdat, Moscow, 1949, 248 pp. (In Russian)

[17] Rabotnov Yu. N., “Equilibrium of an elastic medium with after-effect”, Fractional Calculus and Applied Analysis, 17:3 (2014), 684–696 | DOI | Zbl | Zbl

[18] Bugakov I. I., Polzuchest' polimernykh materialov [Creep of Polymer Materials], Nauka, Moscow, 1973, 288 pp.

[19] Podlubny I., Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Mathematics in Science and Engineering, 198, Academic Press, San Diego, 1999, xxiv+340 pp. | Zbl

[20] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier, Amsterdam, 2006, xx+523 pp. | Zbl

[21] Mainardi F., Fractional calculus and waves in linear viscoelasticity. An introduction to mathematical models, World Scientific, Hackensack, NJ, 2010, xx+347 pp. | DOI | Zbl

[22] Samko S. G. Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poriadka i nekotorye ikh prilozheniia [Integrals and derivatives of fractional order and some of their applications], Nauka i tekhnika, Minsk, 1987, 688 pp. (In Russian) | Zbl

[23] Gemant A., “On fractional differentials”, Philos. Mag., VII. Ser., 25 (1938), 540–549 | DOI | Zbl

[24] Ogorodnikov E. N., Yashagin N. S., “Some Special Functions in the Solution To Cauchy Problem for a Fractional Oscillating Equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2009, no. 1(18), 276–279 (In Russian) | DOI

[25] Dzhrbashyan M. M., Integral'nye preobrazovaniia i predstavleniia funktsii v kompleksnoi oblasti [Integral Transforms and Representation of Functions in Complex Domain], Nauka, Moscow, 1966, 672 pp. (In Russian) | Zbl

[26] Ogorodnikov E. N., Radchenko V. P., Yashagin N. S., “Rheological model of viscoelastic body with memory and differential equations of fractional oscillator”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2011, no. 1(22), 255–268 (In Russian) | DOI

[27] Ogorodnikov E. N., Yashagin N. S., “On some properties of operators with Mittag-Leffler type functions in kernels”, Proceedings of the Sixth All-Russian Scientific Conference with international participation (1–4 June 2009). Part 3, Matem. Mod. Kraev. Zadachi, Samara State Technical Univ., Samara, 2009, 181–188 (In Russian)

[28] Abusaitova L. G., Ogorodnikov E. N., “Some special functions associated with the Mittag–Leffler function, their properties, and applications”, Nelokal'nye kraevye zadachi i problemy sovremennogo analiza i informatiki [Non-local boundary value problems and problems of modern analysis and informatics], Nal'chik, 2012, 13–15 (In Russian)

[29] Gorenflo R., Mainardi F., “Fractional Calculus. Integral and Differential Equations of Fractional Order”, Fractals and Fractional Calculus in Continuum Mechanics, CISM Courses and Lectures, 378, Springer, Wien, 1997, 223–276 | DOI | Zbl

[30] Koeller R. C., “Applications of Fractional Calculus to the Theory of Viscoelasticity”, J. Appl. Mech., 51:2 (1984), 299–307 | DOI | Zbl

[31] Carpinteri A., Cornetti P., Sapora A., “Nonlocal elasticity: an approach based on fractional calculus”, Meccanica, 49:11 (2014), 2551–2569 | DOI | Zbl

[32] Bagley R. L., Torvic P. J., “A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity”, J. Rheol., 27:3 (1983), 201–210 | DOI | Zbl

[33] Bagley R. L., Torvic P. J., “Fractional calculus — A different approach to the analysis of viscoelastically damped structures”, AIAA Journal, 21:5 (1984), 741–748 | DOI

[34] Lewandowski R., \Russian Chorążyczewski B., “Identification of the parameters of the Kelvin–Voigt and the Maxwell fractional models, used to modeling of viscoelastic dampers”, Computers and Structures, 88:1–2 (2009), 1–17 | DOI

[35] Caputo M., Mainardi F., “Linear models of dissipation in anelastic solids”, La Rivista del Nuovo Cimento, 1:2 (1971), 161–198 | DOI

[36] Caputo M., Mainardi F., “A new dissipation model based on memory mechanism”, Pure and Applied Geophysics, 91:1 (1971), 134–147 | DOI

[37] Scott Blair G. W., “The role of psychophysics in rheology”, Journal of Colloid Science, 2:1 (1947), 21–32 | DOI

[38] Scott Blair G. W., A survey of general and applied rheology, Sir Isaac Pitman Sons, Ltd., London, 1949, xvi+314 pp. | Zbl

[39] Gerasimov A. N., “A generalization of linear laws of deformation and its application to internal friction problem”, Prikl. Mat. Mekh., 12:3 (1948), 251–260 (In Russian) | Zbl

[40] Barrett J. H., “Differential equations of non-integer order”, Canad. J. Math., 6 (1954), 529–541 | DOI | Zbl

[41] Ogorodnikov E. N., Abusaitova L. G., “Relations definition, and initial problem for viscoelastic media with fractional Riemann–Liouville operators”, The VIII All-Russian Conference on Mechanics Mechanics of Deformable Solids, Book of Abstracts and Conference Materials, Chuvash State Pedagogical Univ., Cheboksary, 2014, 105–107 (In Russian)

[42] Abusaitova L. G., Ogorodnikov E. N., “Mathematical modeling of viscoelastic fluids with memory and the problem of parametric identification of fractional rheological models”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 40–41 (In Russian)

[43] Ungarova L. G., “Explicit solutions of the creep problem for some non-linear rheological models of hereditary elastic body”, The XI All-Russian Congress on Fundamental Problems of Theoretical and Applied Mechanics, Abstracts Book, Kazan', 2015, 3843–3845 (In Russian)

[44] Radchenko V. P., Goludin E. P., “Phenomenological stochastic isothermal creep model for an polivinylchloride elastron”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 1(16), 45–52, xx+347 pp. (In Russian) | DOI