Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2016_20_1_a10, author = {A. I. Nikonov}, title = {Summation on the basis of combinatorial representation of equal powers}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {149--157}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a10/} }
TY - JOUR AU - A. I. Nikonov TI - Summation on the basis of combinatorial representation of equal powers JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2016 SP - 149 EP - 157 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a10/ LA - ru ID - VSGTU_2016_20_1_a10 ER -
%0 Journal Article %A A. I. Nikonov %T Summation on the basis of combinatorial representation of equal powers %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2016 %P 149-157 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a10/ %G ru %F VSGTU_2016_20_1_a10
A. I. Nikonov. Summation on the basis of combinatorial representation of equal powers. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 20 (2016) no. 1, pp. 149-157. http://geodesic.mathdoc.fr/item/VSGTU_2016_20_1_a10/
[1] Coolidge J. L., “The story of the Binomial Theorem”, Amer. Math. Monthly, 56:3 (1949), 147–157 | DOI | Zbl
[2] Lin Cong, On Bernoulli Numbers and Its Properties, 2004, 7 pp., arXiv: [math.HO] math/0408082
[3] Benjamin A. T., Plott S. S., “A combinatorial approach to Fibonomial coefcients”, Fibonacci Quarterly, 46/47:1 (2008/2009), 7–9 Retrieved from (August 08, 2015) http://www.fq.math.ca/Papers1/46_47-1/Benjamin_11-08.pdf
[4] Benjamin A. T., Greg O. P., Quinn J. J., “A Stirling Encounter with Harmonic Numbers”, Mathematics Magazine, 75:2 (2002), 95–103 | DOI | Zbl
[5] Edwards A. W. F., “Sums of Powers of Integers: A Little of the History”, The Mathematical Gazette, 66:435 (1982), 22–28 | DOI | Zbl
[6] Beery J., Sums of Powers of Positive Integers - Introduction, Convergence (July 2010), 2010 | DOI
[7] Nikonov A. I., “Converting the Sum of Weighted Degrees of Natural Numbers with the Same Parameters”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2010, no. 1(20), 258–262 | DOI
[8] Nikonov A. I., “Reduction of the sum of the weight equal powers to explicit combinatorial representation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 3(28), 163–169 | DOI | Zbl
[9] Arithmetic and Geometric Series in Ken Ward's Mathematics Pages Retrieved from (August 08, 2015) http://www.trans4mind.com/personal_development/mathematics/series/airthmeticGeometricSeries.htm
[10] Riley K. F., Hobson M. P., Bence S. Y., Mathematical Methods for Physics and Engineering, Cambridge University Press, Cambridge, 2006, xxiv+1232 pp. | DOI
[11] Nikonov A. I., “Rising of Efficiency of Enciphering on the Basis of Summation of Products”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 2(35), 199–207 | DOI | Zbl
[12] Graham R. L., Knuth D. E., Patashnik O., Concrete mathematics. A foundation for computer science, Addison-Wesley Publishing Company, Reading, MA, 1994, xiv+657 pp. | Zbl