Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_4_a9, author = {Zh. Tasmambetov}, title = {On the usage of special functions of two variables for studying of orthogonal polynomials of two variables}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {710--721}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a9/} }
TY - JOUR AU - Zh. Tasmambetov TI - On the usage of special functions of two variables for studying of orthogonal polynomials of two variables JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 710 EP - 721 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a9/ LA - ru ID - VSGTU_2015_19_4_a9 ER -
%0 Journal Article %A Zh. Tasmambetov %T On the usage of special functions of two variables for studying of orthogonal polynomials of two variables %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2015 %P 710-721 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a9/ %G ru %F VSGTU_2015_19_4_a9
Zh. Tasmambetov. On the usage of special functions of two variables for studying of orthogonal polynomials of two variables. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 710-721. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a9/
[1] Tasmambetov Zh. N., “On the usage of special functions of two variables for studying of orthogonal polynomials of two variables”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 349–350 (In Russian)
[2] Appell P., Kampé de Fériet J., Fonctions hypergéométriques et hypersphériques: polynomes d'Hermite, Gauthier-Villars, Paris, 1926
[3] Sternberg W., “Über die asymptotische Integration von Differentialgleichungen”, Math. Ann., 81:2 (1920), 119–186 | DOI | MR | Zbl
[4] Tasmambetov Zh. N., The construction of solutions of the system of differential equations with a regular feature by Frobenius–Latysheva generalized method, Preprint /Academy of Sciences of the Ukrainian SSR, Mathematics Institute: 91.29, Kiev,, 1991, 44 pp. (In Russian)
[5] Tasmambetov Zh. N., “On irregular singular curves of Whittaker type systems”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 4(33), 25–33 (In Russian) | DOI | Zbl
[6] Tasmambetov Zh. N., “A Certain system of second-order partial differential equations”, Ukrainian Mathematical Journal, 44:3 (1992), 371–375 | DOI | MR | Zbl
[7] Erdélyi A., Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. 1, Bateman Manuscript Project, McGraw-Hill Book Co., New York, 1953, xxvi+302 pp. Retrieved from (August 08, 2015) http://resolver.caltech.edu/CaltechAUTHORS:20140123-104529738 | Zbl
[8] Tasmambetov Zh. N., “Legendre polynomials of two variables as solutions of the reduced system of partial differential equations”, Problemy optimizatsii slozhnykh sistem [Optimization Problems of Complex Systems], Proc. of the 10th International Asian Summer School, Part II, Issyk-Kul' Avrora, Kyrgyzstan, 2014, 119–186 (In Russian)
[9] Ince E. L., Ordinary differential equations, Dover Pub., New York, 1956 | MR
[10] Erdélyi A.; Magnus W., Oberhettinger F., Tricomi F. G., Higher transcendental functions, v. II, Bateman Manuscript Project, McGraw-Hill Book Co., New York, 1953, xvii+396 pp. Retrieved from (August 08, 2015) http://resolver.caltech.edu/CaltechAUTHORS:20140123-104529738 | Zbl