On a class of vector fields
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 680-696

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a simple postulate “The displacement field of the vacuum is a normalized electric field”, is equivalent to three parametric representation of the displacement field of the vacuum: $$ u(x;t) = P(x) \cos k(x)t + Q(x) \sin k(x)t. $$ Here $t$ — time; $k(x)$ — frequency vibrations at the point of three-dimensional Euclidean space; $P(x), Q(x)$ — a pair of stationary orthonormal vector fields; $(k,P, Q)$ — parameter list of the displacement field. In this case, the normalization factor has dimension $T^{-2}$. The speed of the displacement field $$ v(x;t) = \frac{\partial u(x;t)}{\partial t} = k(x)(Q(x) \cos k(x)t - P(x) \sin k(x)t). $$ The electric field corresponding to this distribution of the displacement field of vacuum, is given by the formula $$ E(x;t) = -\frac{\partial v(x;t)}{\partial t} = k^2(x)u(x;t). $$ Moreover, the magnetic induction $$ B(x;t) = \mathop{\mathrm{rot }} v(x; t). $$ These constructions are used in the determination of local and global solutions of Maxwell's equations describing the dynamics of electromagnetic fields.
Keywords: local and global solutions of Maxwell's equations, spectral problem for rotor operator, the small flow of the displacement field.
@article{VSGTU_2015_19_4_a7,
     author = {G. G. Islamov},
     title = {On a class of vector fields},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {680--696},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a7/}
}
TY  - JOUR
AU  - G. G. Islamov
TI  - On a class of vector fields
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 680
EP  - 696
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a7/
LA  - ru
ID  - VSGTU_2015_19_4_a7
ER  - 
%0 Journal Article
%A G. G. Islamov
%T On a class of vector fields
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 680-696
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a7/
%G ru
%F VSGTU_2015_19_4_a7
G. G. Islamov. On a class of vector fields. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 680-696. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a7/