Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_4_a7, author = {G. G. Islamov}, title = {On a class of vector fields}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {680--696}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a7/} }
TY - JOUR AU - G. G. Islamov TI - On a class of vector fields JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 680 EP - 696 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a7/ LA - ru ID - VSGTU_2015_19_4_a7 ER -
G. G. Islamov. On a class of vector fields. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 680-696. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a7/
[1] Islamov G. G., “On a class of vector fields”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 187 (In Russian)
[2] Poincaré H., Théorie des tourbillons. Leçons professés pendant le 2$^e$ semestre 1891–92, rédigés par Lamotte, [Reproduction en fac-similé, 1893], J. Gabay, Sceaux, 1990, 221 pp. (In French) ; Труды XXIII летней школы “Анализ и синтез нелинейных механических колебательных систем”, СПб., 1996, 6–49 NUMM-29068 | Zbl
[3] Zhilin P. A. Reality and Mechanics, Analysis and Synthesis of Nonlinear Mechanical Systems, Proc. of XXIII school–seminar, St. Petersburg, 1996, 6–49 (In Russian)
[4] Kozlov V. V., Dynamical Systems X. General Theory of Vortices, Encyclopaedia of Mathematical Sciences, 67, Springer-Verlag, Berlin, Heidelberg, 2003, viii+184 pp. | DOI | MR | Zbl
[5] Brown G. B., “A new treatment of the theory of dimensions”, Proc. Phys. Soc., 53:4 (1941), 418–432 | DOI
[6] “Some relations between physical constants”, Doklady Acad. Nauk USSR, 163:4 (1965), 861–864
[7] di Bartini R. O., “Some relations between physical constants”, Doklady Acad. Nauk USSR, 163:4 (1965), 861–864 (In Russian)
[8] Kirsch A., Hettlich F., The Mathematical Theory of Time-Harmonic Maxwell's Equations, Applied Mathematical Sciences, 190, Springer, New York, 2015, xiii+337 pp. | DOI | MR | Zbl
[9] Shapiro I. S., “On the history of the discovery of the Maxwell equations”, Sov. Phys. Usp., 15:5 (1973), 651–659 | DOI | DOI
[10] Levin M. L., Miller M. A., “Maxwell's ‘Treatise on Electricity and Magnetism’”, Sov. Phys. Usp., 24:12 (1981), 904–913 | DOI | DOI | MR
[11] Capria M. M., Manini M.-G., On the relativistic unification of electricity and magnetism, 2011, 47 pp.arXiv: : [physics.hist-ph] 1111.7126
[12] Fushchich V. I., Nikitin A. G., “On new and old symmetries of the Maxwell and Dirac equations”, Phys. Part. Nuclei, 14:1 (1983), 1–22 | MR
[13] Zhou X. L., “On independence, completness of Maxwell's equations and uniqueness theorems in electromagnetics”, PIER, 64 (2006), 117–134 | DOI
[14] Laptev G. F., Elementy vektornogo ischisleniia [Elements of vector calculus], Nauka, Moscow, 1975, 336 pp. (In Russian)
[15] Chorin A. J., Marsden J. E., A Mathematical Introduction to Fluid Mechanics, Universitext, Springer-Verlag, New York, 1979, vii+205 pp. | DOI | Zbl
[16] Bogolyubov A. N., Levashova N. T.,Mogilevskiy I. E., Mukhartova Iu. V., Shapkina N. E., Funktsiia Grina operatora Laplasa [The Green function of the Laplace operator], Moscow State Univ., Phys. Faculty, Moscow, 2012, 130 pp. (In Russian)
[17] Meshkov I. N., Chirikov B. V., Elektromagnitnoe pole. Ch. 1. Elektrichestvo i magnetizm [Electromagnetic field. Part 1. Electricity and Magnetism], Reguliarnaia i khaoticheskaia dinamika, Moscow, Izhevsk, 2013, 544 pp. (In Russian)
[18] Tomilin A. K., “The potential-vortex theory of electromagnetic waves”, JEMAA, 5:9 (2013), 347–353 | DOI
[19] Matute E. A., “On the vector solutions of Maxwell equations in spherical coordinate systems”, Rev. Mex. Fis. E, 51:1 (2005), 31–36, arXiv: [physics.class-ph] physics/0512261 | MR
[20] Filonov N., “Spectral analysis of the selfadjoint operator rot in a domain of finite measure”, St. Petersburg Math. J., 11:6 (2000), 1085–1095 | MR | Zbl
[21] Saks R. S., “Solution of the spectral problem for the curl and Stokes operators with periodic boundary conditions”, J. Math. Sci. (N. Y.), 136:2 (2006), 3794–3811 | DOI | MR | Zbl
[22] Cantarella J., DeTurck D., Gluck H., Teytel M., “The spectrum of the curl operator on spherically symmetric domains”, Phys. plasmas, 7:7 (2000), 2766–2775 | DOI | MR
[23] Ghrist R., Komendarczyk R., “Overtwisted energy-minimizing curl eigenfields”, Nonlinearity, 19:1 (2006), 41–51, arXiv: [math.SG] math/0411319 | DOI | MR | Zbl
[24] Saks R. S., “The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(31) (2013), 131–146 (In Russian) | DOI
[25] McDonald K. T., Force-Free Magnetic Fields aka Eigenfunctions of the Curl Operator, 2011, 11 pp. http://www.hep.princeton.edu/~mcdonald/examples/forcefree.pdf
[26] Chubykalo A. E. Espinoza A., “Unusual formations of the free electromagnetic field in vacuum”, J. Pys. A: Math. Gen., 35:38 (2002), 8043–8053, arXiv: [physics.gen-ph] physics/0503193 | DOI | MR | Zbl
[27] Arrayás M., Trueba J. L., “A class of non-null toroidal electromagnetic fields and its relation to the model of electromagnetic knots”, J. Phys. A: Math. Theor., 48:2 (2015), 025203, arXiv: [hep-th] 1106.1122 | DOI | MR | Zbl