On a class of vector fields
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 680-696.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that a simple postulate “The displacement field of the vacuum is a normalized electric field”, is equivalent to three parametric representation of the displacement field of the vacuum: $$ u(x;t) = P(x) \cos k(x)t + Q(x) \sin k(x)t. $$ Here $t$ — time; $k(x)$ — frequency vibrations at the point of three-dimensional Euclidean space; $P(x), Q(x)$ — a pair of stationary orthonormal vector fields; $(k,P, Q)$ — parameter list of the displacement field. In this case, the normalization factor has dimension $T^{-2}$. The speed of the displacement field $$ v(x;t) = \frac{\partial u(x;t)}{\partial t} = k(x)(Q(x) \cos k(x)t - P(x) \sin k(x)t). $$ The electric field corresponding to this distribution of the displacement field of vacuum, is given by the formula $$ E(x;t) = -\frac{\partial v(x;t)}{\partial t} = k^2(x)u(x;t). $$ Moreover, the magnetic induction $$ B(x;t) = \mathop{\mathrm{rot }} v(x; t). $$ These constructions are used in the determination of local and global solutions of Maxwell's equations describing the dynamics of electromagnetic fields.
Keywords: local and global solutions of Maxwell's equations, spectral problem for rotor operator, the small flow of the displacement field.
@article{VSGTU_2015_19_4_a7,
     author = {G. G. Islamov},
     title = {On a class of vector fields},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {680--696},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a7/}
}
TY  - JOUR
AU  - G. G. Islamov
TI  - On a class of vector fields
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 680
EP  - 696
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a7/
LA  - ru
ID  - VSGTU_2015_19_4_a7
ER  - 
%0 Journal Article
%A G. G. Islamov
%T On a class of vector fields
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 680-696
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a7/
%G ru
%F VSGTU_2015_19_4_a7
G. G. Islamov. On a class of vector fields. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 680-696. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a7/

[1] Islamov G. G., “On a class of vector fields”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 187 (In Russian)

[2] Poincaré H., Théorie des tourbillons. Leçons professés pendant le 2$^e$ semestre 1891–92, rédigés par Lamotte, [Reproduction en fac-similé, 1893], J. Gabay, Sceaux, 1990, 221 pp. (In French) ; Труды XXIII летней школы “Анализ и синтез нелинейных механических колебательных систем”, СПб., 1996, 6–49 NUMM-29068 | Zbl

[3] Zhilin P. A. Reality and Mechanics, Analysis and Synthesis of Nonlinear Mechanical Systems, Proc. of XXIII school–seminar, St. Petersburg, 1996, 6–49 (In Russian)

[4] Kozlov V. V., Dynamical Systems X. General Theory of Vortices, Encyclopaedia of Mathematical Sciences, 67, Springer-Verlag, Berlin, Heidelberg, 2003, viii+184 pp. | DOI | MR | Zbl

[5] Brown G. B., “A new treatment of the theory of dimensions”, Proc. Phys. Soc., 53:4 (1941), 418–432 | DOI

[6] “Some relations between physical constants”, Doklady Acad. Nauk USSR, 163:4 (1965), 861–864

[7] di Bartini R. O., “Some relations between physical constants”, Doklady Acad. Nauk USSR, 163:4 (1965), 861–864 (In Russian)

[8] Kirsch A., Hettlich F., The Mathematical Theory of Time-Harmonic Maxwell's Equations, Applied Mathematical Sciences, 190, Springer, New York, 2015, xiii+337 pp. | DOI | MR | Zbl

[9] Shapiro I. S., “On the history of the discovery of the Maxwell equations”, Sov. Phys. Usp., 15:5 (1973), 651–659 | DOI | DOI

[10] Levin M. L., Miller M. A., “Maxwell's ‘Treatise on Electricity and Magnetism’”, Sov. Phys. Usp., 24:12 (1981), 904–913 | DOI | DOI | MR

[11] Capria M. M., Manini M.-G., On the relativistic unification of electricity and magnetism, 2011, 47 pp.arXiv: : [physics.hist-ph] 1111.7126

[12] Fushchich V. I., Nikitin A. G., “On new and old symmetries of the Maxwell and Dirac equations”, Phys. Part. Nuclei, 14:1 (1983), 1–22 | MR

[13] Zhou X. L., “On independence, completness of Maxwell's equations and uniqueness theorems in electromagnetics”, PIER, 64 (2006), 117–134 | DOI

[14] Laptev G. F., Elementy vektornogo ischisleniia [Elements of vector calculus], Nauka, Moscow, 1975, 336 pp. (In Russian)

[15] Chorin A. J., Marsden J. E., A Mathematical Introduction to Fluid Mechanics, Universitext, Springer-Verlag, New York, 1979, vii+205 pp. | DOI | Zbl

[16] Bogolyubov A. N., Levashova N. T.,Mogilevskiy I. E., Mukhartova Iu. V., Shapkina N. E., Funktsiia Grina operatora Laplasa [The Green function of the Laplace operator], Moscow State Univ., Phys. Faculty, Moscow, 2012, 130 pp. (In Russian)

[17] Meshkov I. N., Chirikov B. V., Elektromagnitnoe pole. Ch. 1. Elektrichestvo i magnetizm [Electromagnetic field. Part 1. Electricity and Magnetism], Reguliarnaia i khaoticheskaia dinamika, Moscow, Izhevsk, 2013, 544 pp. (In Russian)

[18] Tomilin A. K., “The potential-vortex theory of electromagnetic waves”, JEMAA, 5:9 (2013), 347–353 | DOI

[19] Matute E. A., “On the vector solutions of Maxwell equations in spherical coordinate systems”, Rev. Mex. Fis. E, 51:1 (2005), 31–36, arXiv: [physics.class-ph] physics/0512261 | MR

[20] Filonov N., “Spectral analysis of the selfadjoint operator rot in a domain of finite measure”, St. Petersburg Math. J., 11:6 (2000), 1085–1095 | MR | Zbl

[21] Saks R. S., “Solution of the spectral problem for the curl and Stokes operators with periodic boundary conditions”, J. Math. Sci. (N. Y.), 136:2 (2006), 3794–3811 | DOI | MR | Zbl

[22] Cantarella J., DeTurck D., Gluck H., Teytel M., “The spectrum of the curl operator on spherically symmetric domains”, Phys. plasmas, 7:7 (2000), 2766–2775 | DOI | MR

[23] Ghrist R., Komendarczyk R., “Overtwisted energy-minimizing curl eigenfields”, Nonlinearity, 19:1 (2006), 41–51, arXiv: [math.SG] math/0411319 | DOI | MR | Zbl

[24] Saks R. S., “The eigenfunctions of curl, gradient of divergence and Stokes operators. Applications”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2(31) (2013), 131–146 (In Russian) | DOI

[25] McDonald K. T., Force-Free Magnetic Fields aka Eigenfunctions of the Curl Operator, 2011, 11 pp. http://www.hep.princeton.edu/~mcdonald/examples/forcefree.pdf

[26] Chubykalo A. E. Espinoza A., “Unusual formations of the free electromagnetic field in vacuum”, J. Pys. A: Math. Gen., 35:38 (2002), 8043–8053, arXiv: [physics.gen-ph] physics/0503193 | DOI | MR | Zbl

[27] Arrayás M., Trueba J. L., “A class of non-null toroidal electromagnetic fields and its relation to the model of electromagnetic knots”, J. Phys. A: Math. Theor., 48:2 (2015), 025203, arXiv: [hep-th] 1106.1122 | DOI | MR | Zbl