Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_4_a6, author = {A. R. Zaynullov}, title = {An inverse problem for two-dimensional equations of finding the thermal conductivity of the initial distribution}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {667--679}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a6/} }
TY - JOUR AU - A. R. Zaynullov TI - An inverse problem for two-dimensional equations of finding the thermal conductivity of the initial distribution JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 667 EP - 679 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a6/ LA - ru ID - VSGTU_2015_19_4_a6 ER -
%0 Journal Article %A A. R. Zaynullov %T An inverse problem for two-dimensional equations of finding the thermal conductivity of the initial distribution %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2015 %P 667-679 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a6/ %G ru %F VSGTU_2015_19_4_a6
A. R. Zaynullov. An inverse problem for two-dimensional equations of finding the thermal conductivity of the initial distribution. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 667-679. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a6/
[1] Denisov A. M., Elements of the theory of inverse problems, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 1999., iv+272 pp. | DOI | Zbl
[2] Tikhonov A. N.; Samarskii A. A., Equations of mathematical physics, International Series of Monographs on Pure and Applied Mathematics, 39, Pergamon Press, Oxford etc., 1963, xvi+765 pp. | Zbl | Zbl
[3] Sobolev S. L., Uravneniia matematicheskoi fiziki [Equations of mathematical physics], Nauka, Moscow, 1992, 432 pp. (In Russian) | Zbl
[4] Vladimirov V. S., Zharinov V. V., Uravneniia matematicheskoi fiziki [Equations of mathematical physics], Fizmatlit, M., 2000, 398 pp. (In Russian) | Zbl
[5] Koshlyakov N. S., Smirnov M. M., Gliner E. B., Differential equations of mathematical physics, North-Holland Publishing Company, Amsterdam, 1964, xvi+701 pp. | Zbl | Zbl
[6] Godunov S. K., Uravneniia matematicheskoi fiziki [Equations of mathematical physics], Nauka, Moscow, 1978, 392 pp. (In Russian) | Zbl
[7] Sabitov K. B., Uravneniia matematicheskoi fiziki [Equations of mathematical physics], Fizmatlit, Moscow, 2013, 352 pp. (In Russian)
[8] Sabitov K. B., “A boundary value problem for a third-order equation of mixed type”, Dokl. Math., 80:1 (2009), 565–568 | DOI | MR | Zbl
[9] Zaynullov A. R., “Inverse problems for the heat equation”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2015, no. 6(128), 62–75 (In Russian)
[10] Tikhonov A. N., Arsenin V. Ya., Solutions of ill-posed problems, Scripta Series in Mathematics, John Wiley Sons, New York etc., 1977, xiii+258 pp. | Zbl
[11] Lavrent'ev M. M., Romanov V. G., Shishatskij S. P., Ill-posed problems of mathematical physics and analysis, Translations of Mathematical Monographs, 64, American Mathematical Society, Providence, R.I., 1986, vi+290 pp. | Zbl | Zbl
[12] Ivanov V. K., Vasin V. V., Tanana V. P., Theory of linear ill-posed problems and its applications, Inverse and Ill-Posed Problems Series, VSP, Utrecht, 2002, xiii+281 pp. | DOI | Zbl | Zbl