Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_4_a5, author = {D. K. Durdiev}, title = {On the uniqueness of kernel determination in the integro-differential equation of parabolic type}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {658--666}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a5/} }
TY - JOUR AU - D. K. Durdiev TI - On the uniqueness of kernel determination in the integro-differential equation of parabolic type JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 658 EP - 666 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a5/ LA - ru ID - VSGTU_2015_19_4_a5 ER -
%0 Journal Article %A D. K. Durdiev %T On the uniqueness of kernel determination in the integro-differential equation of parabolic type %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2015 %P 658-666 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a5/ %G ru %F VSGTU_2015_19_4_a5
D. K. Durdiev. On the uniqueness of kernel determination in the integro-differential equation of parabolic type. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 658-666. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a5/
[1] Durdiev D. K., Rashidov A. Sh., “Inverse problem of determining the kernel in an integro-differential equation of parabolic type”, Differ. Equ., 50:1 (2014), 110–116 | DOI | DOI | MR | Zbl
[2] Kasemets K., Janno J., “Inverse problems for a parabolic integro-differential equation in convolutional weak form”, Abstract and Applied Analysis, 2013 (2013), 297104, 16 pp. | DOI | Zbl
[3] von Wolfersdorf L., Janno J., “On the theory of convolution equations of the third kind, II”, Journal of Mathematical Analysis and Applications, 342:2 (2008), 838–863 | DOI | Zbl
[4] Janno J., von Wolfersdorf L., “Identification of memory kernels in one-dimensional heat flow with boundary conditions of the third kind”, Inverse Problems in Engineering, 9:2 (2001), 175–198 | DOI
[5] Janno J., von Wolfersdorf L., “An inverse problem for identification of a time- and space-dependent memory kernel of a special kind in heat conduction”, Inverse problems, 15:6 (1999), 1455–1467 | DOI | Zbl
[6] Janno J., von Wolfersdorf L., “Inverse problems for identification of memory kernels in heat flow”, Journal of Inverse and Ill-Posed Problems, 4:1 (1996), 39–66 | DOI | Zbl
[7] Romanov V. G., Obratnye zadachi matematicheskoi fiziki [Inverse problems of mathematical physics], Nauka, Moscow, 1984, 264 pp. (In Russian) | MR | Zbl
[8] Prilepko A. I., Kostin A. B., “Inverse problems of the determination of the coefficient in parabolic equations. I”, Sib. Math. J., 33:3 (1992), 489–496 | DOI | Zbl
[9] Prilepko A. I., Kostin A. B., “On inverse problems of determining a coefficient in a parabolic equation. II”, Siberian Math. J., 34:5 (1993), 923–937 | DOI | MR | Zbl
[10] Iskenderov A. D., “Multidimensional inverse problems for linear and quasi-linear parabolic equations”, Sov. Math., Dokl., 16:5 (1975), 1564–1568 | MR | Zbl
[11] Beznoshchenko N. Ya., “On determining the coefficient in a parabolic equation”, Differ. Uravn., 10:1 (1974), 24–35 (In Russian)
[12] Beznoshchenko N. Ya., “Determination of coefficients of higher terms in a parabolic equation”, Siberian Math. J., 16:3 (1975), 360–367 | DOI
[13] Romanov V. G., “An abstract inverse problem and questions of its uniqueness”, Funct. Anal. Appl., 7:3 (1973), 223–229 | DOI | MR | Zbl
[14] Romanov V. G., “On one uniqueness theorem for an integral geometry problem on a set of curves”, Matematicheskie problemy geofiziki [Mathematical Problems of Geophysics], Computing Center, Siberian Branch of the USSR Acad. Sci., Novosibirsk, 1973, 140–146 (In Russian)