The Dirichlet problem for mixed type equation with two lines of degeneracy in a rectangular area
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 634-649.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the first boundary value problem for the elliptic-hyperbolic type equation with two perpendicular lines of change of type and spectral parameter. We prove the existence and uniqueness of the solution. In the proof of the uniqueness of solution we use the completeness of biorthogonal system in space $ L_2$. When building a solution as the sum of a series there is a problem of small denominators. We obtained estimates of the denominators of the separation from zero.
Keywords: mixed type equation, Dirichlet problem, uniqueness, spectral method.
Mots-clés : existence of a solution
@article{VSGTU_2015_19_4_a3,
     author = {A. A. Gimaltdinova},
     title = {The {Dirichlet} problem for mixed type equation  with two lines  of degeneracy  in a rectangular area},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {634--649},
     publisher = {mathdoc},
     volume = {19},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a3/}
}
TY  - JOUR
AU  - A. A. Gimaltdinova
TI  - The Dirichlet problem for mixed type equation  with two lines  of degeneracy  in a rectangular area
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 634
EP  - 649
VL  - 19
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a3/
LA  - ru
ID  - VSGTU_2015_19_4_a3
ER  - 
%0 Journal Article
%A A. A. Gimaltdinova
%T The Dirichlet problem for mixed type equation  with two lines  of degeneracy  in a rectangular area
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 634-649
%V 19
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a3/
%G ru
%F VSGTU_2015_19_4_a3
A. A. Gimaltdinova. The Dirichlet problem for mixed type equation  with two lines  of degeneracy  in a rectangular area. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 634-649. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a3/

[1] Gimaltdinova A. A., “The Dirichlet problem for mixed type equation with two lines of degeneracy in a rectangular area”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 120–121 (In Russian)

[2] Sabitov K. B., Bikkulova G. G., Gimaltdinova A. A., K teorii uravnenii smeshannogo tipa s dvumia liniiami izmeneniia tipa [On the Theory of Mixed Type Equations with Two Lines of Change of Type], Gilem, Ufa, 2006, 150 pp. (In Russian)

[3] Rassias J. M., “The Exterior Tricomi and Frankl Problems for Quaterelliptic-Quaterhyperbolic Equations with Eight Parabolic Lines”, Eur. J. Pure Appl. Math., 4:2 (2011), 186–208 http://www.ejpam.com/index.php/ejpam/article/view/1175/195 | Zbl

[4] Frankl F. I., Izbrannye trudy po gazovoi dinamike [Selected Works in Gas Dynamics], Nauka, Moscow, 1973, 711 pp. (In Russian)

[5] Bitsadze A. V., “Incorrectness of Dirichlet's problem for the mixed type of equations in mixed regions”, Dokl. Akad. Nauk SSSR, 122:2 (1958), 167–170 (In Russian) | Zbl

[6] Shabat B. V., “Examples of solving the Dirichlet problem for equations of mixed type”, Dokl. Akad. Nauk SSSR, 112:3 (1957), 386–389 (In Russian) | Zbl

[7] Cannon J. R., “A Dirichlet problem for an equation of mixed type with a discontinuous coefficient”, Annali di Matematica, 61:1 (1963), 371–377 | DOI | Zbl

[8] Nakhushev A. M., “A criterion for uniqueness of the Dirichlet problem for a mixed-type equation in the cylindrical domain”, Differ. Uravn., 6:1 (1970), 190–191 (In Russian) | Zbl

[9] Khachev M. M., “On the Dirichlet Problem for an Equation of Mixed Type”, Differ. Uravn., 12:1 (1976), 137–143 (In Russian) | Zbl

[10] Soldatov A. P., “Dirichlet-type problems for the Lavrent'ev–Bitsadze equation. I. Uniqueness theorems”, Dokl. Math., 48:2 (1994), 410–414 | MR | Zbl

[11] Soldatov A. N., “Dirichlet-type problems for the Lavrent'ev–Bitsadze equation. II. Existence theorems”, Dokl. Math., 48:3 (1994), 433–437 | MR | Zbl

[12] Sabitov K. B., “The Dirichlet problem for equations of mixed type in a rectangular domain”, Dokl. Math., 75:2 (2007), 193–196 | DOI | MR | Zbl

[13] Sabitov K. B., Vagapova E. V., “Dirichlet problem for an equation of mixed type with two degeneration lines in a rectangular domain”, Differ. Equ., 49:1 (2013), 68–78 | DOI | Zbl

[14] Il'in V. A., “Proof of uniqueness and membership in $W_ 2^ 1$ of the classical solution of a mixed problem for a self-adjoint hyperbolic equation”, Math. Notes, 17:1 (1975), 53–58 ; Арнольд В. И., “Исправления к работе В. Арнольда “Малые знаменатели. I””, Изв. АН СССР. Сер. матем., 28:2 (1964), 479–480 | DOI | MR | Zbl | MR | Zbl

[15] Arnol'd V. I., “Small denominators. I. Mapping the circle onto itself”, Izv. Akad. Nauk SSSR Ser. Mat., 25:1 (1961), 21–86 (In Russian) ; Arnol'd V., “Correction to V. Arnol'd's paper: “Small denominators. I.””, Izv. Akad. Nauk SSSR Ser. Mat., 28:2 (1964), 479–480 (In Russian) | MR | MR | Zbl | Zbl

[16] Lomov I. S., “Small denominators in analytic theory of degenerate differential equations”, Differ. Equ., 29:12 (1993), 1811–1820 | Zbl