Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_4_a2, author = {D. B. Volov}, title = {The oscillator's model with broken symmetry}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {624--633}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a2/} }
TY - JOUR AU - D. B. Volov TI - The oscillator's model with broken symmetry JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 624 EP - 633 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a2/ LA - ru ID - VSGTU_2015_19_4_a2 ER -
D. B. Volov. The oscillator's model with broken symmetry. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 624-633. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a2/
[1] Volov D. M., “The oscillator’s model with broken symmetry”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 110–111 (In Russian)
[2] Magnus W., Winkler S., Hill's Equation, Interscience Tracts in Pure and Applied Mathematics, 20, Interscience Publ., New York, London, Sydney, 1966, viii+127 pp. | MR
[3] Varró S., “A new class of exact solutions of the Klein–Gordon equation of a charged particle interacting with an electromagnetic plane wave in a medium”, Laser Phys. Lett., 11:1 (2014), 016001 | DOI
[4] Takara M., Toyoshima M., Seto H., Hoshino Y., Miura Y., “Polymer-modified gold nanoparticles via RAFT polymerization: a detailed study for a biosensing application”, Polym. Chem., 5:3 (2014), 931–939 | DOI
[5] Vázquez C., Collado J., Fridman L., “Super twisting control of a parametrically excited overhead crane”, Journal of the Franklin Institute, 351:4 (2014), 2283–2298 | DOI | MR
[6] Lei H., Xu B., “High-order analytical solutions around triangular libration points in the circular restricted three-body problem”, Monthly Notices of the Royal Astronomical Society, 434:2 (2013), 1376–1386 | DOI
[7] Volov D. B., “Equation on the basis of one-dimensional chaotic dynamics”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 1(30), 334–342 (In Russian) | DOI
[8] Volov D. B., “On unitarity of bitrial evolution operators in the explicit generalized equation”, Vestnik SamGUPS, 2013, no. 4, 107–11 (In Russian)
[9] Magnus K., Popp K., Sextro W., Schwingungen. Physikalische Grundlagen und mathematische Behandlung von Schwingungen [Oscillations. Physical foundations and mathematical treatment of oscillations], Springer Vieweg, Wiesbaden, 2013, xi+298 pp. | DOI | Zbl
[10] Landau L. D., Lifshitz E. M., “Chapter V – Small Oscillations”, Course of Theoretical Physics, v. 1, Mechanics, Elsevier Ltd., 1976, 58–95 | DOI | MR | MR | Zbl
[11] Davydov A. S., Teoriia tverdogo tela [Theory of Solids], Nauka, Moscow, 1976, 639 pp. (In Rusiian)