Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_4_a12, author = {S. A. Bochkarev and S. V. Lekomtsev}, title = {An aeroelastic stability of the circular cylindrical shells containing a flowing fluid}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {750--767}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a12/} }
TY - JOUR AU - S. A. Bochkarev AU - S. V. Lekomtsev TI - An aeroelastic stability of the circular cylindrical shells containing a flowing fluid JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 750 EP - 767 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a12/ LA - ru ID - VSGTU_2015_19_4_a12 ER -
%0 Journal Article %A S. A. Bochkarev %A S. V. Lekomtsev %T An aeroelastic stability of the circular cylindrical shells containing a flowing fluid %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2015 %P 750-767 %V 19 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a12/ %G ru %F VSGTU_2015_19_4_a12
S. A. Bochkarev; S. V. Lekomtsev. An aeroelastic stability of the circular cylindrical shells containing a flowing fluid. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 750-767. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a12/
[1] Novichkov Yu. N., “Flutter of plates and shells”, Advances in Science and Technology. Mechanics of Deformable Solids, 11, VINITI, Moscow, 1978, 67–122 (In Russian) | MR
[2] Bismarck-Nasr M. N., “Finite element analysis of aeroelasticity of plates and shells”, Appl. Mech. Rev., 45:12 (1992), 461–482 | DOI
[3] Païdoussis M. P., Fluid-structure Interactions: Slender Structures and Axial Flow, v. 2, Academic Press, London, 2003, 1040 pp.
[4] Bochkarev S. A., Matveenko V. P., “Specific features of dynamic behavior of stationary and rotating singlecoaxial cylindrical shells interacting with the axial and rotational fluid flows”, J. Vib. Acoust., 137:2 (2015), 021001 | DOI
[5] Païdoussis M. P., Chan S. P., Misra A. K., “Dynamics and stability of coaxial cylindrical shells containing flowing fluid”, J. Sound Vib., 97:2 (1984), 201–235 | DOI
[6] Païdoussis M. P., Nguyen V. B., Misra A. K., “A theoretical study of the stability of cantilevered coaxial cylindrical shells conveying fluid”, J. Fluids Struct., 5:2 (1991), 127–164 | DOI
[7] Bochkarev S. A., Matveyenko V. P., “The dynamic behaviour of elastic coaxial cylindrical shells conveying fluid”, J. App. Math. Mech., 74:4 (2010), 467–474 | DOI | MR | Zbl
[8] Bochkarev S. A., Lekomtsev S. V., “Investigation of boundary conditions influence on stability of coaxial cylindrical shells interacting with flowing fluid”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 3(28), 88–101 (In Russian) | DOI | Zbl
[9] Chiu E. K.-Y., Farhat C., “Effects of fuel slosh on flutter prediction”, 50th AIAA/ASME/AS\ CE/AHS/ASC/ Structures, Structural Dynamics, and Materials Conference, 2009, AIAA Paper 2009–2682–377 | DOI
[10] Farhat C., Chiu E. K.-Y., Amsallem D., Schottó J.-S., Ohayon R., “Modeling of fuel sloshing and its physical effects on flutter”, AIAA J., 51:9 (2013), 2252–2265 | DOI
[11] Sabri F., Lakis A. A., “Hybrid finite element method applied to supersonic flutter of an empty or partially liquid-filled truncated conical shell”, J. Sound Vib., 329:3 (2010), 302–316 | DOI
[12] Sabri F., Lakis A. A., “Effects of sloshing on flutter prediction of liquid-filled circular cylindrical shell”, J. Aircr., 48:6 (2011), 1829–1839 | DOI
[13] Noorian M., Haddadpour H., Firouz-Abadi R., “Investigation of panel flutter under the effect of liquid sloshing”, J. Aerosp. Eng., 28:2 (2015), 04014059 | DOI
[14] Biderman V. L., Mekhanika tonkostennykh konstruktsii, Mashinostroenie, M., 1977, 488 pp.
[15] Voss H. M., “The effect of an external supersonic flow on the vibration characteristics of thin cylindrical shells”, J. Aerospase Sci., 28:12 (1961), 945–956 | DOI | MR | Zbl
[16] Bochkarev S. A., Matveenko V. P., “Finite-element solution of panel flutter of shell structures”, Matem. Mod., 14:12 (2002), 55–71 (In Russain)
[17] Vol'mir A. S., Obolochki v potoke zhidkosti i gaza. Zadachi gidrouprugosti [Shells in Fluid and Gas Flow. Problems of Hydroelasticity], Nauka, Moscow, 1979, 320 pp. (In Russian)
[18] Bochkarev S. A., Matveenko V. P., “Numerical study of the influence of boundary conditions on the dynamic behavior of a cylindrical shell conveying a fluid”, Mechanics of Solids, 43:3 (2008), 477–486 | DOI | MR
[19] Zienkiewicz O. C., The finite element method in engineering science, McGraw-Hill, London etc., 1971, xiv+521 pp. | MR | Zbl
[20] Shivakumar K. N., Krishna Murty A. V., “A high precision ring element for vibrations of laminated shells”, J. Sound Vib., 58:3 (1978), 311–318 | DOI | Zbl
[21] Matveenko V. P., “On one algorithm for solving the problem of natural vibrations of elastic bodies by finite element method”, Boundary value problems of elasticity and viscoelasticity, UNC AN SSSR, Sverdlovsk, 1980, 20–24 (In Russian)
[22] Matveenko V. P., Sevodin M. A., Sevodina N. V., “Applications of Muller's method and the argument principle to eigenvalue problems in solid mechanics”, Computational Continuum Mechanics, 2014, no. 3, 331–336 (In Russian) | DOI
[23] Olson M. D., Fung Y. C., “Comparing theory and experiment for the supersonic flutter of circular cylindrical shells”, AIAA J., 5:10 (1967), 1849–1856 | DOI
[24] Carter L. L., Stearman R. O., “Some aspects of cylindrical shell panel flutter”, AIAA J., 6:1 (1968), 37–43 | DOI | Zbl
[25] Ganapathi M., Varadan T. K., Jijen J., “Field-consistent element applied to flutter analysis of circular cylindrical shells”, J. Sound Vib., 171:4 (1994), 509–527 | DOI | Zbl
[26] Sabri F., Lakis A. A., “Finite element method applied to supersonic flutter of circular cylindrical shells”, AIAA J., 48:1 (2010), 73–81 | DOI
[27] Weaver D. S., Unny T. E., “On the dynamic stability of fluid-conveying pipes”, J. Appl. Mech., 40:1 (1973), 48–52 | DOI | Zbl
[28] Selmane A., Lakis A. A., “Vibration analysis of anisotropic open cylindrical shells subjected to a flowing fluid”, J. Fluids Struct., 11:1 (1997), 111–134 | DOI
[29] Kochupillai J., Ganesan N., Padmanabhan C., “A semi-analytical coupled finite element formulation for shells conveying fluids”, Comp. Struct., 80:3–4 (2002), 271–286 | DOI | MR
[30] Amabili M., Garziera R., “Vibrations of circular cylindrical shells with nonuniform constraints, elastic bed and added mass; Part II: Shells containing or immersed in axial flow”, J. Fluids Struct., 16:1 (2002), 31–51 | DOI
[31] Uğurlu B., Ergin A., “A hydroelastic investigation of circular cylindrical shells-containing flowing fluid with different end conditions”, J. Sound Vib., 318:4–5 (2008), 1291–1312 | DOI