Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_4_a11, author = {T. K. Yuldashev}, title = {An inverse problem for a nonlinear {Fredholm}}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {736--749}, publisher = {mathdoc}, volume = {19}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a11/} }
TY - JOUR AU - T. K. Yuldashev TI - An inverse problem for a nonlinear Fredholm JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 736 EP - 749 VL - 19 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a11/ LA - ru ID - VSGTU_2015_19_4_a11 ER -
T. K. Yuldashev. An inverse problem for a nonlinear Fredholm. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 4, pp. 736-749. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_4_a11/
[11] Algazin S. D., Kiyko I. A., Flatter plastin i obolochek [Flutter of plates and shells], Nauka, Moscow, 2006, 248 pp. (In Russian)
[12] Abzalimov R. R., Salyakhova E. V., “A difference-analytical method for the computation of eigenvalues of the fourth-order equations with separated boundary conditions”, Russian Math. (Iz. VUZ), 52:11 (2008), 1–9 | DOI | MR | Zbl
[13] Dzhuraev T. D., Sopuev A., K teorii differentsial'nykh uravnenii v chastnykh proizvodnykh chetvertogo poriadka [Theory of partial differential equations of fourth order], Fan, Tashkent, 2000, 144 pp. (In Russian)
[14] F. Kh. Mukminov, I. M. Bikkulov, “Stabilization of the norm of the solution of a mixed problem in an unbounded domain for parabolic equations of orders 4 and 6”, Sb. Math., 195:3 (2004), 413–440 | DOI | DOI | MR | Zbl
[15] Nikishkin V. A., “On the asymptotics of the solution of the Dirichlet problem for a fourth-order equation in a layer”, Comput. Math. Math. Phys., 54:8 (2014), 1214–1220 | DOI | DOI | MR | Zbl
[16] Smirnov M. M., Modelnyye uravneniya smeshannogo tipa chetvertogo poryadka [Mixed type model equation of fourth order], Leningrad State University Press, Leningrad, 1972 (In Russian)
[17] Yuldashev T. K., “On a mixed value problem for nonlinear partial differential equation of the fourth order with reflecting deviation”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2011, no. 4, 40–48 (In Russian) | Zbl
[18] Yuldashev T. K., “On a mixed value problem for a nonlinear partial differential equation containing a squared hyperbolic operator and nonlinear reflecting deviation”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2011, no. 2(14), 59–69 (In Russian)
[19] Yuldashev T. K., “Mixed value problem for a nonlinear differential equation of fourth order with small parameter on the parabolic operator”, Comput. Math. Math. Phys., 51:9 (2011), 1596–1604 | DOI | MR | Zbl
[20] Yuldashev T. K., “On a mixed value problem for one nonlinear partial integro-differential equation of the fourth order”, Zhurnal SVMO, 14:2 (2012), 137–142 (In Russian)
[21] Denisov A. M., Vvedeniye v teoriyu obratnykh zadach [Introduction to the theory of inverse problem], Lomonosov Moscow State University Press, Moscow, 1994, 285 pp. (In Russian)
[22] Denisov A. M., “Inverse problem for a quasilinear system of partial differential equations with a nonlocal boundary condition”, Comput. Math. Math. Phys., 54:10 (2014), 1513–1521 | DOI | DOI | MR | Zbl
[23] Kostin A. B., “The inverse problem of recovering the source in a parabolic equation under a condition of nonlocal observation”, Sb. Math., 204:10 (2013), 1391–1434 | DOI | DOI | MR | Zbl
[24] Lavrent'ev M. M., Savel'ev L. Ya., Linear operators and ill-posed problems, Consultants Bureau, New York, 1995, xiv+382 pp. | Zbl
[25] Megraliev Ya. T., “On an inverse boundary value problem for a second-order elliptic equation with integral condition of the first kind”, Trudy Inst. Mat. i Mekh. UrO RAN, 19:1 (2013), 226–235 (In Russian)
[26] Prilepko A. I., Kostin A. B., “On certain inverse problems for parabolic equations with final and integral observation”, Russian Acad. Sci. Sb. Math., 75:2 (1993), 473–490 | DOI | MR | Zbl
[27] Prilepko A. I., Tkachenko D. S., “Properties of solutions of a parabolic equation and the uniqueness of the solution of the inverse source problem with integral overdetermination”, Comput. Math. Math. Phys., 43:4 (2003), 537–546 | MR | Zbl
[28] Romanov V. G., Inverse Problems of Mathematical Physics, VNU Science Press, Utrecht, 1987, vii+224 pp.
[29] Yuldashev T. K., “Inverse problem for a nonlinear integral and differential equation of the third order”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2013, no. 9/1(110), 58–66 (In Russian) | Zbl
[30] Yuldashev T. K., “On inverse problem for nonlinear integro-differential equations of the higher order”, Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriia: Fizika. Matematika [Proceedings of Voronezh State University. Series: Physics. Mathematics], 2014, no. 1, 153–163 (In Russian)
[31] Yuldashev T. K., “On the inverse problem for the quasilinear partial differential equation of the first order”, Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2012, no. 2(18), 56–62 (In Russian)
[32] Yuldashev T. K., “On an inverse problem for a system of quazilinear equations in partial derivatives of the first order”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2012, no. 6, 35–41 (In Russian) | Zbl
[33] Yuldashev T. K., “Inverse problem for nonlinear partial differential equation with high order pseudoparabolic operator”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012, no. 3(28), 17–29 (In Russian) | DOI | Zbl
[34] Yuldashev T. K., “Inverse problem for nonlinear integral differential equation with hyperbolic operator of a high degree”, Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 5:1 (2013), 69–75 (In Russian) | Zbl
[35] Yuldashev T. K., Seredkina A. I., “Inverse problem for quazilinear partial integro-differential equations of higher order”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 3(32) (2013), 46–55 (In Russian) | DOI | Zbl
[36] Yuldashev T. K., “On solvability of mixed value problem for linear parabolo-hyperbolic Fredholm integro-differential equation”, Zhurnal SVMO, 15:3 (2013), 158–163 (In Russian) | Zbl
[37] Yuldashev T. K., “Inverse problem for a Fredholm third order partial integro-differential equation”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 1(34), 56–65 (In Russian) | DOI | Zbl
[38] Yuldashev T. K., “A double inverse problem for Fredholm integro-differential equation of elliptic type”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 2(35), 39–49 (In Russian) | DOI | Zbl
[39] Yuldashev T. K., Shabadikov K. X., “The inverse problem for the hyperbolic Fredholm integro-differential equations”, Tavricheskii vestnik informatiki i matematiki [Tourida journal of computer science theory and mathematics], 2014, no. 1, 73–81 (In Russian) http://tvim.info/files/73_81_Yuldashev.pdf
[40] Trenogin V. A., Funktsional'nyi analiz [Functional analyses], Nauka, Moscow, 1980, 495 pp. (In Russian)