Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_3_a4, author = {L. N. Krivonosov and V. A. Luk'yanov}, title = {The complete solution of the {Yang-Mills} equations for centrally symmetric metric}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {462--473}, publisher = {mathdoc}, volume = {19}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a4/} }
TY - JOUR AU - L. N. Krivonosov AU - V. A. Luk'yanov TI - The complete solution of the Yang-Mills equations for centrally symmetric metric JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 462 EP - 473 VL - 19 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a4/ LA - ru ID - VSGTU_2015_19_3_a4 ER -
%0 Journal Article %A L. N. Krivonosov %A V. A. Luk'yanov %T The complete solution of the Yang-Mills equations for centrally symmetric metric %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2015 %P 462-473 %V 19 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a4/ %G ru %F VSGTU_2015_19_3_a4
L. N. Krivonosov; V. A. Luk'yanov. The complete solution of the Yang-Mills equations for centrally symmetric metric. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 3, pp. 462-473. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a4/
[1] Krivonosov L. N, Luk'yanov V. A., “The full decision of Young–Mills equations for the central-symmetric metrics”, J. Sib. Fed. Univ. Math. Phys., 4:3 (2011), 350–362 (In Russian)
[2] Krivonosov L. N, Luk'yanov V. A., “Solution of Yang-Mills equations for central-cymmetric metric in the presence of electromagnetic field”, Prostranstvo, vremia i fundamental'nye vzaimodeistviia [Space, Time, and Fundamental Interactions], 2013, no. 3, 54-63 (In Russian)
[3] Krivonosov L. N, Luk'yanov V. A., “Connection of Young-Mills Equations with Einstein and Maxwell's Equations”, J. Sib. Fed. Univ. Math. Phys., 2:4 (2009), 432–448 (In Russian)
[4] Merkulov S. A., “Twistor connection and conformal gravitation”, Theoret. and Math. Phys., 60:2 (1984), 842–845 | DOI | MR | Zbl
[5] Bach R., “Zur Weylschen Relativitätstheorie und der Weylschen Erweiterung des Krümmungstensorbegriffs”, Math. Z., 9:1 (1921), 110–135 | DOI | Zbl
[6] Vladimirov Yu. S., Geometrofizika [Geometrophysics], Binom, Moscow, 2010, 536 pp. (In Russian)
[7] Korzyński M., Lewandowski J., “The normal conformal Cartan connection and the Bach tensor”, Class. Quantum Grav., 20:16 (2003), 3745–3764, arXiv: gr-qc/0301096 | DOI | Zbl
[8] Trunev A. P., “Hadrons metrics simulation on the Yang–Mills equations”, Nauchnyi zhurnal KubGAU, 2012, no. 84(10), 1–14 (In Russian) http://ej.kubagro.ru/2012/10/pdf/68.pdf
[9] Merkulov S. A., “A conformally invariant theory of gravitation and electromagnetism”, Class. Quantum Grav., 1:4 (1984), 349–354 | DOI
[10] Krivonosov L. N., Lukyanov V. A., “Purely time-dependent solutions to the Yang–Mills equations on a $4$-dimensional manifold with conformal torsion-free connection”, J. Sib. Fed. Univ. Math. Phys., 6:1 (2013), 40–52
[11] Yang C. N., Mills R. L., “Conservation of Isotopic Spin and Isotopic Gauge Invariance”, Phys. Rev., 96:1 (1954), 191–195 | DOI | Zbl