Gauge Group Contraction of Electroweak Model and its Natural Energy Limits
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 3, pp. 425-440.

Voir la notice de l'article provenant de la source Math-Net.Ru

The low and higher energy limits of the Electroweak Model are obtained from first principles of gauge theory. Both limits are given by the same contraction of the gauge group, but for the different consistent rescalings of the field space. Mathematical contraction parameter in both cases is interpreted as energy. The very weak neutrino-matter interaction is explained by zero tending contraction parameter, which depends on neutrino energy. The second consistent rescaling corresponds to the higher energy limit of the Electroweak Model. At the infinite energy all particles lose masses, electroweak interactions become long-range and are mediated by the neutral currents. The limit model represents the development of the early Universe from the Big Bang up to the end of the first second.
Keywords: gauge theory, electroweak model, contraction, limit model.
@article{VSGTU_2015_19_3_a2,
     author = {N. A. Gromov},
     title = {Gauge {Group} {Contraction}  of {Electroweak} {Model} and its {Natural} {Energy} {Limits}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {425--440},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a2/}
}
TY  - JOUR
AU  - N. A. Gromov
TI  - Gauge Group Contraction  of Electroweak Model and its Natural Energy Limits
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 425
EP  - 440
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a2/
LA  - ru
ID  - VSGTU_2015_19_3_a2
ER  - 
%0 Journal Article
%A N. A. Gromov
%T Gauge Group Contraction  of Electroweak Model and its Natural Energy Limits
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 425-440
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a2/
%G ru
%F VSGTU_2015_19_3_a2
N. A. Gromov. Gauge Group Contraction  of Electroweak Model and its Natural Energy Limits. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 3, pp. 425-440. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a2/

[1] Gromov N. A., “Gauge group contraction of electroweak model and its natural energy limits”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 131–132 (In Russian)

[2] Inönü E., Wigner E. P., “On the Contraction of Groups and their Representations”, Proceedings of the National Academy of Sciences, 39:6 (1953), 510–524 ; ; | DOI | MR | Zbl | DOI | DOI

[3] Gromov N. A., Kontraktsii klassicheskikh i kvantovykh grupp [Contractions of Classical and Quantum Groups], Fizmatlit, Moscow, 2012, 318 pp. (In Russian)

[4] Gromov N. A., “Contraction of electroweak model and neutrino”, Phys. Atom. Nucl., 75:10 (2012), 1203–1209 ; | DOI | MR

[5] Gromov N. A., “Interpretation of neutrino-matter interactions at low energies as contraction of gauge group of electroweak model”, Phys. Atom. Nucl., 76:9 (2013), 1144–1148 ; | DOI | DOI

[6] Rubakov V. A., Klassicheskie kalibrovochnye polia [Classical Gauge Fields], Editorial URSS, Moscow, 1999, 152 pp. (In Russian) | MR

[7] Peskin M., Shreder D., Vvedenie v kvantovuiu teoriiu polia [An Introduction to Quantum Field Theory], Reguliarnaia i khaoticheskaia dinamika, Izhevsk, 2001 (In Russian)

[8] Gromov N. A., “Analog of electroweak model for contracted gauge group”, Phys. Atom. Nucl., 73:2 (2010), 326–330, arXiv: [math-ph] ; 0811.4701 | DOI

[9] Gromov N. A., “Limiting case of modified electroweak model for contracted gauge group”, Phys. Atom. Nucl., 74:6 (2011), 908–913, arXiv: [math-ph] ; 1003.1832 | DOI

[10] Okun' L. B., Leptony i kvarki [Leptons and quarks], Editorial URSS, Moscow, 2005, 352 pp. (In Russian)

[11] Nakamura K. et al. (Particle Data Group), “Review of Particle Physics”, J. Phys. G, 37:7A (2010), 075021 http://pdg.lbl.gov/2010/reviews/contents_sports.html | DOI

[12] Gromov N. A., “Vysoko- i nizkoenergeticheskie predely elektroslaboi modeli [Higer and Low Energy Limits of Electroweak Model]”, Izvestiia Komi NTs UrO RAN, 2014, no. 1(17), 5–9 (In Russian) | MR

[13] Linder C., Particle Physics and Inflationary Cosmology, Harwood Academic Publ., Newark, New Jersey, United States, 1990 | DOI

[14] Gorbunov D. S., Rubakov V. A., Introduction to the Theory of the Early Universe, World Scientific, Singapure, 2011 | DOI

[15] Gorbunov D. S., Inflationary Models with Flat Potential, Presentation for Int. Conf. “New Trends in High-Energy Physics” (Alushta, Crimea, Sept. 23–29, 2013), 2013 http://crimea.bitp.kiev.ua/reg/files/gorbunov.pdf