Mots-clés : convergence
@article{VSGTU_2015_19_3_a10,
author = {V. N. Maklakov},
title = {Convergence of the matrix method of~numerical~integration of the boundary value problems},
journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
pages = {559--577},
year = {2015},
volume = {19},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a10/}
}
TY - JOUR AU - V. N. Maklakov TI - Convergence of the matrix method of numerical integration of the boundary value problems JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 559 EP - 577 VL - 19 IS - 3 UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a10/ LA - ru ID - VSGTU_2015_19_3_a10 ER -
%0 Journal Article %A V. N. Maklakov %T Convergence of the matrix method of numerical integration of the boundary value problems %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2015 %P 559-577 %V 19 %N 3 %U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a10/ %G ru %F VSGTU_2015_19_3_a10
V. N. Maklakov. Convergence of the matrix method of numerical integration of the boundary value problems. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 3, pp. 559-577. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a10/
[1] Keller H. B., “Accurate difference methods for nonlinear two-point boundary value problems”, SIAM J. Numer. Anal., 11:2 (1974), 305–320 | DOI | MR | Zbl
[2] Lentini M., Pereyra V., “A variable order finite difference method for nonlinear multipoint boundary value problems”, Math. Comp., 28:128 (1974), 981–1003 | DOI | MR | Zbl
[3] Keller H. B., “Numerical solution of boundary value problems for ordinary differential equations: Survey and some resent results on difference methods”, Numerical solutions of boundary value problems for ordinary differential equations, ed. A. K. Aziz, Academic Press, New York, 1975, 27–88 | DOI | MR | Zbl
[4] Godunov S. K., Ryaben'kij V. S., Difference schemes. An introduction to the underlying theory, Studies in Mathematics and its Applications, 19, North-Holland, Amsterdam, 1987, xvii+489 pp. | MR | Zbl
[5] Formaleev V. F., Reviznikov D. L., Chislennye metody [Numerical Methods], Fizmatlit, Moscow, 2004, 400 pp. (In Russian)
[6] Samarskii A., The Theory of Difference Schemes, Pure and Applied Mathematics, 240, Marcel Dekker, New York, Bassel, 2001, 786 pp. | DOI | MR | Zbl
[7] Samarskii A. A., Gulin A. V., Chislennye metody [Numerical methods], Nauka, Moscow, 1989, 432 pp. (In Russian) | Zbl
[8] Samarskii A. A., Gulin A. V., Ustoichivost' raznostnykh skhem [Stability Theory of Difference Schemes], Nauka, Moscow, 1973, 416 pp. (In Russian) | Zbl
[9] Boutayeb A., Chetouani A., “Global extrapolations of numerical methods for a parabolic problem with nonlocal boundary conditions”, International Journal of Computer Mathematics, 80:6 (2003), 789–797 | DOI | MR | Zbl
[10] Boutayeb A., Chetouani A., “A numerical comparison of different methods applied to the solution of problems with non local boundary conditions”, Applied Mathematical Sciences, 1:44 (2007), 2173–2185 http://www.m-hikari.com/ams/ams-password-2007/ams-password41-44-2007/boutayebAMS41-44-2007.pdf | MR
[11] Radchenko V. P., Usov A. A., “Modified grid method for solving linear differential equation equipped with variable coefficients based on Taylor series”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2008, no. 2(17), 60–65 (In Russian) | DOI
[12] Maklakov V. N., “Estimation of the Order of the Matrix Method Approximation of Numerical Integration of Boundary-Value Problems for Inhomogeneous Linear Ordinary Differential Equations of the Second Order”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014, no. 3(36), 143–160 (In Russian) | DOI | DOI
[13] Zaks L., Statisticheskoe otsenivanie [Statistical estimation], Statistika, Moscow, 1976, 598 pp. (In Russian) | MR
[14] Turchak L. I., Osnovy chislennykh metodov [The fundamentals of numerical methods], Nauka, Moscow, 1987, 320 pp. (In Russian) | MR