The Ising Model with Long-Range Interactions
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 3, pp. 415-424.

Voir la notice de l'article provenant de la source Math-Net.Ru

The phase transition in the two-dimensional and three-dimensional Ising models with long-range spin interactions are studied with the Monte–Carlo method. The interaction region between spins is characterized by the radius $R$. Results based on numerical simulations have shown the critical temperature $T_c$ dependence from the spin interaction radius $R$. Analytical function $T_{c}(R)$ approximating this dependence is designed.
Keywords: Ising model, critical temperature, Monte–Carlo method, parallel calculations.
Mots-clés : phase transition
@article{VSGTU_2015_19_3_a1,
     author = {A. A. Biryukov and Ya. V. Degtyareva},
     title = {The {Ising} {Model} with {Long-Range} {Interactions}},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {415--424},
     publisher = {mathdoc},
     volume = {19},
     number = {3},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a1/}
}
TY  - JOUR
AU  - A. A. Biryukov
AU  - Ya. V. Degtyareva
TI  - The Ising Model with Long-Range Interactions
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 415
EP  - 424
VL  - 19
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a1/
LA  - ru
ID  - VSGTU_2015_19_3_a1
ER  - 
%0 Journal Article
%A A. A. Biryukov
%A Ya. V. Degtyareva
%T The Ising Model with Long-Range Interactions
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 415-424
%V 19
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a1/
%G ru
%F VSGTU_2015_19_3_a1
A. A. Biryukov; Ya. V. Degtyareva. The Ising Model with Long-Range Interactions. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 3, pp. 415-424. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_3_a1/

[1] Biryukov A. A., Degtyareva Ya. V., “A Long-Range Interaction in the Ising model”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 85–86 (In Russian)

[2] Ising E., Beitrag zur Theorie des Ferro- und Paramagnetismus, Dissertation, Mathematisch-Naturwissenschaftliche Fakultät der Hamburgischen Universität Hamburg, 1924 http://www.fh-augsburg.de/~harsch/germanica/Chronologie/20Jh/Ising/isi_intr.html

[3] Onsager L., “Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition”, Phys. Rev., 65:3-4 (1944), 117–149 | DOI | MR | Zbl

[4] Yang C. N., “The Spontaneous Magnetization of a Two-Dimensional Ising Model”, Phys. Rev., 85:5 (1952), 808–816 | DOI | MR | Zbl

[5] Zinoviev Yu. M., “Spontaneous Magnetization in the Two-Dimensional Ising Model”, Theoret. and Math. Phys., 136:3 (2003), 1280–1296 | DOI | DOI | MR | MR | Zbl

[6] Binder K., Heermann D. W., Monte Carlo Simulation in Statistical Physics, Graduate Texts in Physics, Springer-Verlag, Berlin, Heidelberg, 2010, xiv+200 pp. | DOI | MR | Zbl

[7] Murtazaev A. K., Kamilov I. K., Babaev A. B., “Critical behavior of a cubic-lattice 3D Ising model for systems with quenched disorder”, J. Exp. Theor. Phys., 99:6 (2004), 1201–1206 | DOI

[8] Prudnikov V. V., Prudnikov P. V., Vakilov A. N., Krinitsyn A. S., “Computer simulation of the critical behavior of 3D disordered ising model”, J. Exp. Theor. Phys., 105:2 (2007), 371–378 | DOI | MR

[9] Biriukov A. A., Degtiareva Ya. V., Shleenkov M. A., “Komp'iuternoe modelirovanie modeli Izinga metodom Monte–Karlo vo vneshnem postoiannom magnitnom pole [Monte Carlo simulation of the Ising Model in a constant external magnetic field]”, Vestnik molodykh uchenykh i spetsialistov SamGU, 2012, no. 1, 78–82 (In Russian) | MR

[10] Picco M., Critical behavior of the Ising model with long range interactions, 2012, 5 pp., arXiv: [cond-mat.stat-mech] 1207.1018

[11] Blanchard T., Picco M., Rajapbour M. A., “Influence of long-range interactions on the critical behavior of the Ising model”, EPL (Europhysics Letters), 101:5 (2013), 56003, arXiv: [cond-mat.stat-mech] 1211.6758 | DOI | MR

[12] Angelini M. C., Parisi G., Ricci-Tersenghi F., “Relations between short-range and long-range Ising models”, Phys. Rev. E, 89:6 (2014), 062120, arXiv: [cond-mat.stat-mech] 1401.6805 | DOI

[13] Ramírez-Pastor A. J., Nieto F., Vogel E. E., “Ising lattices with $\pm J$ second-nearest-neighbor interactions”, Phys. Rev. B, 55:21 (1997), 14323–14329 | DOI

[14] dos Anjos R. A., Roberto Viana J., Ricardo de Sousa J., Plascak J. A., “Three-dimensional Ising model with nearest- and next-nearest-neighbor interactions”, Phys. Rev. E, 76:2 (2007), 022103 | DOI

[15] Cirillo E. N. M., Gonnella G., Pelizzola A., “Critical behavior of the three-dimensional Ising model with nearest-neighbor, next-nearest-neighbor, and plaquette interactions”, Phys. Rev. E, 55:1 (1997), R17–R20 | DOI

[16] Sobol' I. M., Chislennye metody Monte–Karlo [Numerical Monte-Carlo methods], Nauka, Moscow, 1973, 313 pp. (In Russian) | MR | Zbl

[17] Ferdinand A. E., Fisher M. E., “Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice”, Phys. Rev., 185:2 (1969), 832–846 | DOI

[18] Fisher M. E., Barder M. N., “Scaling Theory for Finite-Size Effects in the Critical Region”, Phys. Rev. Lett., 28:23 (1972), 1516–1519 | DOI

[19] Murtazaev A. K., Kamilov I. K., Magomedov M. A., “Cluster algorithms of the Monte Carlo method, finite-size scaling, and critical exponents of complex lattice models”, J. Exp. Theor. Phys., 93:6 (2001), 1330–1336 | DOI

[20] Loison D., “Monte Carlo cluster algorithm for ferromagnetic Hamiltonians $H=J \sum_{(ij)}(S_i. S_j)^3$”, Phys. Lett. A, 257:1–2 (1999), 83–87 | DOI

[21] Kamilov I. K., Murtazaev A. K., Aliev. Kh. K., “Monte Carlo studies of phase transitions and critical phenomena”, Phys. Usp., 42:7 (1999), 689–709 | DOI | DOI