De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 2, pp. 283-292

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the multipoint de la Vallee Poussin (interpolational) problem in the half-plane $D$, $D=\{z \, :\, \mathop{\mathrm{Re}} z\alpha,$ $ \alpha>0\}$. Let $\psi(z)\in H(D)$; $\mu_1$, $\mu_2$$\ldots \in D$ be the positive zero points of this function and let the boundary of domain $D$ contain their limit. Also, we assume that $\mu_k$ is of $s_k$ multiplicity, $k=1, 2, \dots$. Let us set $M_{\varphi}$ an operator of convolution with the characteristic function $\varphi(z)$. Taking an arbitrary sequence $a_{kj},$ $j=0, 1, \ldots, s_k-1$ we should ask: is there a function $u(z) \in \mathop{\mathrm{Ker}}M_\varphi$ that provides the relation $u^{(j)}(\mu_{k})=a_{kj},$ $j=0, 1,\dots,s_k-1$? We assume the operator characteristic function to be of completely regular growth. The solvability conditions for the multipoint de la Vallée Poussin problem in the half-plain and in the bounded convex domains are obtained.
Keywords: convolution operator, de la Vallee Poussin problem, the half-plane.
Mots-clés : multiple interpolation
@article{VSGTU_2015_19_2_a5,
     author = {V. V. Napalkov and K. Zimens},
     title = {De la {Vallee} {Poussin} problem in the kernel of the convolution operator on the half-plane},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {283--292},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a5/}
}
TY  - JOUR
AU  - V. V. Napalkov
AU  - K. Zimens
TI  - De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 283
EP  - 292
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a5/
LA  - ru
ID  - VSGTU_2015_19_2_a5
ER  - 
%0 Journal Article
%A V. V. Napalkov
%A K. Zimens
%T De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 283-292
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a5/
%G ru
%F VSGTU_2015_19_2_a5
V. V. Napalkov; K. Zimens. De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 2, pp. 283-292. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a5/