De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 2, pp. 283-292.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the multipoint de la Vallee Poussin (interpolational) problem in the half-plane $D$, $D=\{z \, :\, \mathop{\mathrm{Re}} z\alpha,$ $ \alpha>0\}$. Let $\psi(z)\in H(D)$; $\mu_1$, $\mu_2$$\ldots \in D$ be the positive zero points of this function and let the boundary of domain $D$ contain their limit. Also, we assume that $\mu_k$ is of $s_k$ multiplicity, $k=1, 2, \dots$. Let us set $M_{\varphi}$ an operator of convolution with the characteristic function $\varphi(z)$. Taking an arbitrary sequence $a_{kj},$ $j=0, 1, \ldots, s_k-1$ we should ask: is there a function $u(z) \in \mathop{\mathrm{Ker}}M_\varphi$ that provides the relation $u^{(j)}(\mu_{k})=a_{kj},$ $j=0, 1,\dots,s_k-1$? We assume the operator characteristic function to be of completely regular growth. The solvability conditions for the multipoint de la Vallée Poussin problem in the half-plain and in the bounded convex domains are obtained.
Keywords: convolution operator, de la Vallee Poussin problem, the half-plane.
Mots-clés : multiple interpolation
@article{VSGTU_2015_19_2_a5,
     author = {V. V. Napalkov and K. Zimens},
     title = {De la {Vallee} {Poussin} problem in the kernel of the convolution operator on the half-plane},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {283--292},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a5/}
}
TY  - JOUR
AU  - V. V. Napalkov
AU  - K. Zimens
TI  - De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 283
EP  - 292
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a5/
LA  - ru
ID  - VSGTU_2015_19_2_a5
ER  - 
%0 Journal Article
%A V. V. Napalkov
%A K. Zimens
%T De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 283-292
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a5/
%G ru
%F VSGTU_2015_19_2_a5
V. V. Napalkov; K. Zimens. De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 2, pp. 283-292. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a5/

[1] Zimens K. R., Napalkov V. V., “The interpolation problem for convolution operators on convex domains”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 181–182 (In Russian)

[2] de La Vallée Poussin Ch. J., “Sur l'equation differentielle lineaire du second ordre. Determination d’une integrale par deux valeurs assignees. Extension aux equation d'ordre $n$”, J. Math. pures et appl., 8:2 (1929), 125–144 (In French) | Zbl

[3] Shapiro H. S., “An Algebraic Theorem of E. Fischer, and the Holomorphic Goursat Problem”, Bull. London Math. Soc., 21:6 (1989), 513–537 | DOI | MR | Zbl

[4] Napalkov V. V., “Complex analysis and the Cauchy problem for convolution operators”, Proc. Steklov Inst. Math., 235 (2001), 158–161 | MR | Zbl

[5] Napalkov V. V., Nuyatov A. A., “The multipoint de la Vallée-Poussin problem for a convolution operator”, Sb. Math., 203:2 (2012), 224–233 | DOI | DOI | MR | Zbl

[6] Merzlyakov S. G., Popenov S. V., “Interpolation with multiplicity by series of exponentials in $H(\mathbb C)$ with nodes on the real axis”, Ufa Math. Journal, 5:3 (2013), 127–140 | DOI

[7] Zabirova K. R., Napalkov V. V., “The Dunkl convolution operators and multipoint de la Vallée–Poussin problem”, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2013, no. 1(30), 70–81 (In Russian) | DOI

[8] Napalkov V. V., Mullabaeva A. U., “On one class of differential operators and their application”, Trudy Inst. Mat. i Mekh. UrO RAN, 20, no. 1, 2014, 201–214 (In Russian) | MR

[9] Levin B. J., Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, 1980, 523 pp. | MR

[10] Hörmander L., An introduction to complex analysis in several variables, D. van Nostrand Company, Inc., Princeton, 1966, x+208 pp. | MR | MR | Zbl | Zbl

[11] Leont'ev A. F., Tselye funktsii. Riady eksponent [Entire functions. Exponential series], Nauka, Moscow, 1989, 176 pp. (In Russian) | MR

[12] Tkachenko V. A., “Spectral theory in spaces of analytic functionals for operators generated by multiplication by the independent variable”, Mat. Sb. (N.S.), 112(154):3(7) (1980), 421–466 (In Russian) | MR | Zbl

[13] Napalkov V. V., “A certain class of inhomogeneous equations of convolution type”, Uspehi Mat. Nauk, 29:3(177) (1974), 217–218 (In Russian) | MR | Zbl

[14] Von Muggli H., “Differentialgleichungen unendlich hoher Ordnung mit konstanten Koeffizienten”, Comment. Math. Helv., 11:1 (1938), 151–156 | DOI | MR

[15] Dieudonné J., Schwartz L., “La dualité dans les espaces ($ F$) et ($ L F$)”, Ann. Inst. Fourier Grenoble, 1 (1949), 61–101 (In French) | DOI | MR | Zbl

[16] Epifanov O. V., “On the existence of the continuous right-inverse for an operator in a class of locally convex spaces”, Izv. Sev.-Kavk. Nauchn. Tsentra Vyssh. Shk., Estestv. Nauki, 1991, no. 3(75), 3–4 (In Russian) | MR | Zbl