L\'{e}vy d'Alambertians and their application in the quantum theory
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 2, pp. 241-258.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Lévy d'Alambertian is the natural analogue of the well-known Lévy-Laplacian. The aim of the paper is the following. We study the relationship between different definitions of the Lévy d'Alambertian and the relationship between the Lévy d'Alambertian and the QCD equations (the Yang–Mills–Dirac equations). There are two different definitions of the classical Lévy d'Alambertian. One can define the Lévy d'Alambertian as an integral functional given by the second derivative or define it using the Cesaro means of the directional derivatives along the elements of some orthonormal basis. Using the weakly uniformly dense bases we prove the equivalence of these two definitions. We introduce the family of the nonclassical Lévy d'Alambertians using the family of the nonclassical Lévy Laplacians as a model. Any element of this family is associated with the linear operator on the linear span of the orthonormal basis. The classical Lévy d'Alambertian is an element of this family associated with the identity operator. We can describe the connection between the Lévy d'Alambertians and the gauge fields using the classical Lévy d'Alambertian or another nonclassical Lévy d'Alambertian specified in this paper. We study the relationship between this nonclassical Lévy d'Alambertian and the Yang–Mills equations with a source and obtain the system of infinite dimensional differential equations which is equivalent to the QCD equations.
Keywords: Lévy Laplacian, Lévy d'Alambertian, Yang–Mills equations, Yang–Mills–Dirac equations.
@article{VSGTU_2015_19_2_a2,
     author = {B. O. Volkov},
     title = {L\'{e}vy {d'Alambertians} and their application in the quantum theory},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {241--258},
     publisher = {mathdoc},
     volume = {19},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a2/}
}
TY  - JOUR
AU  - B. O. Volkov
TI  - L\'{e}vy d'Alambertians and their application in the quantum theory
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 241
EP  - 258
VL  - 19
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a2/
LA  - ru
ID  - VSGTU_2015_19_2_a2
ER  - 
%0 Journal Article
%A B. O. Volkov
%T L\'{e}vy d'Alambertians and their application in the quantum theory
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 241-258
%V 19
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a2/
%G ru
%F VSGTU_2015_19_2_a2
B. O. Volkov. L\'{e}vy d'Alambertians and their application in the quantum theory. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 2, pp. 241-258. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a2/

[1] Volkov B. O., “Lévy d'Alambertians and their application in the quantum theory”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 106–107 (In Russian)

[2] Lévy P., Problèmes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951, xiv+484 pp. | MR | Zbl

[3] Feller M. N., The Lévy Laplacian, Cambridge Tracts in Math., 166, Cambridge Univ. Press, Cambridge, 2005 | MR

[4] Accardi L., Smolyanov O. G., “Lévy-Laplace Operators in Functional Rigged Hilbert Spaces”, Math. Notes, 72:1 (2002), 129–134 | DOI | DOI | MR | Zbl

[5] Accardi L., Smolyanov O. G., “Feynman formulas for evolution equations with Levy Laplacians on infinite-dimensional manifolds”, Dokl. Math., 73:2 (2006), 252–257 | DOI | MR | Zbl

[6] Accardi L., Smolyanov O. G., “Classical and nonclassical Lévy Laplacians”, Dokl. Math., 76:3 (2007), 801–805 | DOI | MR | Zbl

[7] Accardi L., Smolyanov O. G., “Generalized L'{e}vy Laplacians and Cesâro means”, Dokl. Math., 79:1 (2009), 90–93 | DOI | MR | Zbl

[8] Accardi L., Ji U. C., Saitô K., “Exotic Laplacians and Derivatives of White Noise”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 14:1 (2011), 1-14 | DOI | MR | Zbl

[9] Accardi L., Ji U. C., Saitô K., “The Exotic (Higher Order Lévy) Laplacians Generate the Markov Processes Given by Distribution Derivatives of White Noise”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 16:3 (2013), 1350020, 26 pp. | DOI | MR | Zbl

[10] Accardi L., Smolianov O. G., “On Laplacians and traces”, Conf. Semin. Univ. Bari, 250 (1993), 1-25 | MR

[11] Gomez F., Smolyanov O. G., “Modified Lévy Laplacians”, Russ. J. Math. Phys., 15:1 (2008), 45–50 | DOI | MR | Zbl

[12] Kuo H.-H., Obata N., Saitô K., “Lévy Laplacian of generalized functions on a nuclear space”, Journal of Functional Analysis, 94:1 (1990), 74–92 | DOI | MR | Zbl

[13] Saitô K., “Infinite Dimensional Laplacians Associated with Derivatives of White Noise”, Quantum Probability and Related Topics, 29 (2013), 233–248 | DOI | MR | Zbl

[14] Volkov B. O., “Lévy-Laplacian and the Gauge Fields”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 15:4 (2012), 1250027, 19 pp. | DOI | MR | Zbl

[15] Volkov B. O., “Quantum Probability and Lévy Laplacians”, Russ. J. Math. Phys., 20:2 (2013), 254–256 | DOI | MR | Zbl

[16] Volkov B. O., “Hierarchy of Lévy-Laplacians and Quantum Stochastic Processes”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 16:4 (2013), 1350027, 20 pp. | DOI | MR

[17] Accardi L., Gibilisco P., Volovich I. V., “Yang–Mills gauge fields as harmonic functions for the Lévy-Laplacians”, Russian J. Math. Phys., 1994, no. 2, 235–250 | MR | Zbl

[18] Accardi L., Gibilisco P., Volovich I. V., “The Lévy Laplacian and the Yang–Mills equations”, Rendiconti Lincei, 4:3 (1993), 201–206 | DOI | MR

[19] Aref'eva I. Ya., Volovich I. V., “Higher order functional conservation laws in gauge theories”, Proc. Int. Conf. Generalized Functions and their Applications in Mathematical Physics, Academy of Sciences of the USSR, Moscow, 1981, 43–49 pp. (In Russian)

[20] Léandre R., Volovich I. V., “The Stochastic Lévy Laplacian and Yang–Mills equation on manifolds”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 4:2 (2001), 161–172 | DOI | MR | Zbl

[21] Averbukh V. I., Smolyanov O. G., Fomin S. V., “Generalized functions and differential equations in linear spaces. II. Differential operators and their Fourier transforms”, Tr. Mosk. Mat. Obs., 27, MSU, Moscow, 1972, 249–262 (In Russian) | MR | Zbl

[22] Gross L., “A Poincarè lemma for connection forms”, Journal of Functional Analysis, 63:1 (1985), 1-46 | DOI | MR | Zbl

[23] Fikhtengolts G. M., Kurs differentsial'nogo i integral'nogo ischisleniia [Differential and integral calculus], v. 3, Fizmatlit, Moscow, 2003, 728 pp. (In Russian)