Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_2_a2, author = {B. O. Volkov}, title = {L\'{e}vy {d'Alambertians} and their application in the quantum theory}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {241--258}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a2/} }
TY - JOUR AU - B. O. Volkov TI - L\'{e}vy d'Alambertians and their application in the quantum theory JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 241 EP - 258 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a2/ LA - ru ID - VSGTU_2015_19_2_a2 ER -
%0 Journal Article %A B. O. Volkov %T L\'{e}vy d'Alambertians and their application in the quantum theory %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2015 %P 241-258 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a2/ %G ru %F VSGTU_2015_19_2_a2
B. O. Volkov. L\'{e}vy d'Alambertians and their application in the quantum theory. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 2, pp. 241-258. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a2/
[1] Volkov B. O., “Lévy d'Alambertians and their application in the quantum theory”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 106–107 (In Russian)
[2] Lévy P., Problèmes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951, xiv+484 pp. | MR | Zbl
[3] Feller M. N., The Lévy Laplacian, Cambridge Tracts in Math., 166, Cambridge Univ. Press, Cambridge, 2005 | MR
[4] Accardi L., Smolyanov O. G., “Lévy-Laplace Operators in Functional Rigged Hilbert Spaces”, Math. Notes, 72:1 (2002), 129–134 | DOI | DOI | MR | Zbl
[5] Accardi L., Smolyanov O. G., “Feynman formulas for evolution equations with Levy Laplacians on infinite-dimensional manifolds”, Dokl. Math., 73:2 (2006), 252–257 | DOI | MR | Zbl
[6] Accardi L., Smolyanov O. G., “Classical and nonclassical Lévy Laplacians”, Dokl. Math., 76:3 (2007), 801–805 | DOI | MR | Zbl
[7] Accardi L., Smolyanov O. G., “Generalized L'{e}vy Laplacians and Cesâro means”, Dokl. Math., 79:1 (2009), 90–93 | DOI | MR | Zbl
[8] Accardi L., Ji U. C., Saitô K., “Exotic Laplacians and Derivatives of White Noise”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 14:1 (2011), 1-14 | DOI | MR | Zbl
[9] Accardi L., Ji U. C., Saitô K., “The Exotic (Higher Order Lévy) Laplacians Generate the Markov Processes Given by Distribution Derivatives of White Noise”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 16:3 (2013), 1350020, 26 pp. | DOI | MR | Zbl
[10] Accardi L., Smolianov O. G., “On Laplacians and traces”, Conf. Semin. Univ. Bari, 250 (1993), 1-25 | MR
[11] Gomez F., Smolyanov O. G., “Modified Lévy Laplacians”, Russ. J. Math. Phys., 15:1 (2008), 45–50 | DOI | MR | Zbl
[12] Kuo H.-H., Obata N., Saitô K., “Lévy Laplacian of generalized functions on a nuclear space”, Journal of Functional Analysis, 94:1 (1990), 74–92 | DOI | MR | Zbl
[13] Saitô K., “Infinite Dimensional Laplacians Associated with Derivatives of White Noise”, Quantum Probability and Related Topics, 29 (2013), 233–248 | DOI | MR | Zbl
[14] Volkov B. O., “Lévy-Laplacian and the Gauge Fields”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 15:4 (2012), 1250027, 19 pp. | DOI | MR | Zbl
[15] Volkov B. O., “Quantum Probability and Lévy Laplacians”, Russ. J. Math. Phys., 20:2 (2013), 254–256 | DOI | MR | Zbl
[16] Volkov B. O., “Hierarchy of Lévy-Laplacians and Quantum Stochastic Processes”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 16:4 (2013), 1350027, 20 pp. | DOI | MR
[17] Accardi L., Gibilisco P., Volovich I. V., “Yang–Mills gauge fields as harmonic functions for the Lévy-Laplacians”, Russian J. Math. Phys., 1994, no. 2, 235–250 | MR | Zbl
[18] Accardi L., Gibilisco P., Volovich I. V., “The Lévy Laplacian and the Yang–Mills equations”, Rendiconti Lincei, 4:3 (1993), 201–206 | DOI | MR
[19] Aref'eva I. Ya., Volovich I. V., “Higher order functional conservation laws in gauge theories”, Proc. Int. Conf. Generalized Functions and their Applications in Mathematical Physics, Academy of Sciences of the USSR, Moscow, 1981, 43–49 pp. (In Russian)
[20] Léandre R., Volovich I. V., “The Stochastic Lévy Laplacian and Yang–Mills equation on manifolds”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 4:2 (2001), 161–172 | DOI | MR | Zbl
[21] Averbukh V. I., Smolyanov O. G., Fomin S. V., “Generalized functions and differential equations in linear spaces. II. Differential operators and their Fourier transforms”, Tr. Mosk. Mat. Obs., 27, MSU, Moscow, 1972, 249–262 (In Russian) | MR | Zbl
[22] Gross L., “A Poincarè lemma for connection forms”, Journal of Functional Analysis, 63:1 (1985), 1-46 | DOI | MR | Zbl
[23] Fikhtengolts G. M., Kurs differentsial'nogo i integral'nogo ischisleniia [Differential and integral calculus], v. 3, Fizmatlit, Moscow, 2003, 728 pp. (In Russian)