Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_2_a12, author = {V. L. Leontiev}, title = {Orthogonal {Franklin} system and orthogonal system of finite functions in numerical methods of boundary problems solving}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {398--404}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a12/} }
TY - JOUR AU - V. L. Leontiev TI - Orthogonal Franklin system and orthogonal system of finite functions in numerical methods of boundary problems solving JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 398 EP - 404 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a12/ LA - ru ID - VSGTU_2015_19_2_a12 ER -
%0 Journal Article %A V. L. Leontiev %T Orthogonal Franklin system and orthogonal system of finite functions in numerical methods of boundary problems solving %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2015 %P 398-404 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a12/ %G ru %F VSGTU_2015_19_2_a12
V. L. Leontiev. Orthogonal Franklin system and orthogonal system of finite functions in numerical methods of boundary problems solving. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 2, pp. 398-404. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a12/
[1] Leontiev V. L., “Orthogonal Franklin system and orthogonal system of finite functions in numerical methods of boundary problems solving”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 228–229 (In Russian)
[2] Haar A., “Zur Theorie der orthogonalen Funktionensysteme”, Math. Ann., 69:3 (1910), 331–371 | DOI | MR | Zbl
[3] Daubechles I., “Orthonormal Bases of Compactly Supported Wavelets”, Commun. Pure Appl. Math., 41:7 (1988), 909–996 ; Daubechles I., “Orthonormal Bases of Compactly Supported Wavelets”, Fundamental Papers in Wavelet Theory, Princeton University Press, Princeton, 2009, 564–652 ; | DOI | MR | DOI | DOI
[4] Faber G., “Über die Orthogonalfunktionen des Herrn Haar”, Jahresbericht der Deutschen Mathematiker-Vereinigung, 19 (1910), 104–112 | Zbl
[5] Shauder J., “Eine Eigenschaft des Haarschen Orthogonalsystems”, Math. Z., 28:1 (1928), 317–320 | DOI | MR
[6] Franklin P., “A set of continuous orthogonal functions”, Math. Ann., 100:1 (1928), 522–529 ; Franklin P., “A set of continuous orthogonal functions”, Fundamental Papers in Wavelet Theory, Princeton University Press, Princeton, 2009, 189–196 ; | DOI | MR | Zbl | DOI | DOI
[7] Ul'yanov P. L., “Haar series”, Sov. Math., Dokl., 4 (1963), 437–440 | Zbl
[8] Ul'janov P. L., “On Haar series”, Mat. Sb. (N.S.), 63:105 (1964), 356–391 (In Russian) | MR | Zbl
[9] Schipp F., Simon P., “Investigation of Haar and Franklin series in Hardy spaces”, Anal. Math., 8:1 (1982), 47–56 | DOI | MR | Zbl
[10] Gevorkyan G. G., “Absolute and conditional convergence of series in Franklin systems”, Math. Notes, 45:3 (1989), 200–210 | DOI | MR | Zbl
[11] Wojtaszczyk P., Woźniakowski K., “Orthonormal polynomial bases in function spaces”, Israel J. Math., 75:2/3 (1991), 167–191 | DOI | MR | Zbl
[12] Kashin B. S., Saakyan A. A., Ortogonal'nye riady [Orthogonal series], AFTs, Moscow, 1999, 550 pp. (In Russian) | MR | Zbl
[13] Chen W., Cai Z., Qi D., “A New Class of Orthogonal Spline Moments and Its Application”, J. Inf. Comput. Sci., 10:14 (2013), 4563–4571 | DOI
[14] Leontiev V. L., Ortogonal'nye finitnye funktsii i chislennye metody [Orthogonal compactly supported functions and numerical methods], Ulyanovsk State Univ., Ulyanovsk, 2003, 178 pp. (In Russian) | MR
[15] Leont'ev V. L., “A variational-grid method involving orthogonal finite functions for solving problems of natural vibrations of 3D elastic solids”, Mech. Solids, 37:3 (2002), 101–109 | MR
[16] Leontiev V. L., “Orthogonal splines and variational-grid method”, Mat. Model., 14:3 (2002), 117–127 (In Russian) | MR | Zbl
[17] Leont'ev V. L., Lukashanets N. Ch., “Grid bases of orthogonal compactly supported functions”, Comput. Math. Math. Phys., 39:7 (1999), 1116–1126 | MR | Zbl
[18] Krasil'nikov A. R.; Leontiev V. L., “On the variation-grid method of the plate theory”, Mat. Model., 17:3 (2005), 23–34 (In Russian) | MR | Zbl
[19] Leontiev V. L., Rikov E. A., “Integral transforms associated with orthogonal finite functions in the spectral analysis of signals”, Mat. Model., 18:7 (2006), 93–100 (In Russian) | MR | Zbl
[20] Leontiev V. L., Mikhaylov I. S., “On the Building the Potential of the Atomic Interaction Based on Orthogonal Finite Functions”, Nano- i mikrosistemnaia tekhnika, 2011, no. 9, 48–50 (In Russian)