Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_2_a1, author = {A. A. Biryukov and M. A. Shleenkov}, title = {The quantum transitions probability as paths-integral in energy states space}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {221--240}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a1/} }
TY - JOUR AU - A. A. Biryukov AU - M. A. Shleenkov TI - The quantum transitions probability as paths-integral in energy states space JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 221 EP - 240 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a1/ LA - ru ID - VSGTU_2015_19_2_a1 ER -
%0 Journal Article %A A. A. Biryukov %A M. A. Shleenkov %T The quantum transitions probability as paths-integral in energy states space %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2015 %P 221-240 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a1/ %G ru %F VSGTU_2015_19_2_a1
A. A. Biryukov; M. A. Shleenkov. The quantum transitions probability as paths-integral in energy states space. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 2, pp. 221-240. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a1/
[1] Biryukov A. A., Shleenkov M. A., “The quantum transitions probability as paths-integral in energy states space”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 87 (In Russian)
[2] Sweatlock L. A., Maier S. A., Atwater H. A., Penninkhof J. J., Polman A., “Highly confined electromagnetic fields in arrays of strongly coupled Ag nanoparticles”, Phys. Rev. B, 2005:23, 235408 | DOI
[3] Hao E., Schatz G. C., “Electromagnetic fields around silver nanoparticles and dimers”, J. Chem. Phys., 120:1 (2004), 357–369 | DOI
[4] Govorov A. O., “Semiconductor-metal nanoparticle molecules in a magnetic field: Spin-plasmon and exciton-plasmon interactions”, Phys. Rev. B, 82:15 (2010), 155322 | DOI
[5] Koshlyakov P. V., Chesnokov E. N., Gorelik S. R., Petrov A.K., “Infrared multiphoton dissociation of $\mathrm{SiF_3CH_3}$”, Khim. Fiz., 25:6 (2006), 22–32 (In Russian)
[6] Ursrey D., Anis F., Esry B. D., “Multiphoton dissociation of $\text{HeH}^{+}$ below the $\text{He}^+(1s) + \text{H}(1s)$ threshold”, Phys. Rev. A, 85:2, 023429, arXiv: [physics.atom-ph] 1112.3688 | DOI
[7] Wellers Ch., Borodin A., Vasilyev S., Offenberg D., Schiller S., “Resonant IR multi-photon dissociation spectroscopy of a trapped and sympathetically cooled biomolecular ion species”, Phys. Chem. Chem. Phys., 13:42 (2011), 18799–809 | DOI
[8] Richter M., Amusia M. Ya., Bobashev S. V., Feigl T., Juranić P. N., Martins M., Sorokin A. A., Tiedtke K., “Extreme Ultraviolet Laser Excites Atomic Giant Resonance”, Phys. Rev. Let., 102:16 (2009), 163002 | DOI
[9] Farrell J. P., Petretti S., Förster J., McFarland B. K., Spector L. S., Vanne Y. V., Decleva P., Bucksbaum P. H., Saenz A., Gühr M., “Strong Field Ionization to Multiple Electronic States in Water”, Phys. Rev. Let., 107:8 (2011), 083001, arXiv: [physics.atom-ph] 1103.4423 | DOI
[10] Goodsell A., Ristroph T., Golovchenko J. A., Hau L. V., “Field Ionization of Cold Atoms near the Wall of a Single Carbon Nanotube”, Phys. Rev. Let., 104:13 (2010), 133002, arXiv: [physics.atom-ph] 1004.2644 | DOI
[11] Raynaud M., Kupersztych J., “Ponderomotive effects in the femtosecond plasmon-assisted photoelectric effect in bulk metals: Evidence for coupling between surface and interface plasmons”, Phys. Rev. B., 76:24 (2007), 241402(R) | DOI
[12] Raynaud M., Kupersztych J., “Anomalous Multiphoton Photoelectric Effect in Ultrashort Time Scales”, Phys. Rev. Let., 95:14 (2005), 147401 | DOI
[13] Zhdanovich S., Bloomquist C., Floß J., Averbukh I. Sh., Hepburn J. W., Milner V., “Quantum Resonances in Selective Rotational Excitation of Molecules with a Sequence of Ultrashort Laser Pulses”, Phys. Rev. Lett., 109:4 (2012), 043003, arXiv: [quant-ph] 1201.3151 | DOI | MR
[14] Floß J., Fishman Shm., Averbukh I. Sh., “Anderson localization in laser-kicked molecules”, Phys. Rev. A, 88:2 (2013), 023426 | DOI
[15] Floß J., Averbukh I. Sh., “Quantum resonance, Anderson localization, and selective manipulations in molecular mixtures by ultrashort laser pulse”, Phys. Rev. A, 86:2 (2013), 021401(R), arXiv: [quant-ph] 1110.3509 | DOI
[16] Feynman R. P., Hibbs A. R., Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 1965 | Zbl
[17] Biryukov A. A., Shleenkov M. A., “The quantum system transitions probability as a paths integral of real functionals”, Teoreticheskaia fizika, 13 (2012), 8–42 (In Russian)
[18] Biryukov A., Shleenkov M., Path integral approach to the problem of rotational excitation of molecules by an ultrashort laser pulses sequence, 2014, 6 pp., arXiv: [quant-ph] 1407.3893
[19] Scully M. O., Zubairy M. S., Quantum Optics, Cambridge University Press, Cambridge, 1997, xxii+630 pp. | DOI
[20] Ryazanov G. V., “Quantum-mechanical probability as a sum over path”, JETP, 35:1 (1958), 121–131 | Zbl
[21] Landau L. D., Lifshitz E. M., Course of Theoretical Physics, v. 3, Quantum mechanics. Non-relativistic theory, Pergamon Press Ltd., London, New York, Paris, Los Angeles, 1958, xii+515 pp. | MR | Zbl | Zbl
[22] Irikura K., “Experimental Vibrational Zero-Point Energies: Diatomic Molecules”, J. Phys. Chem. Ref. Data, 36:2 (2007), 389–397 | DOI
[23] NIST Computational Chemistry Comparison and Benchmark Database, ed. Russell D. Johnson III, Release 16a, August 2013 http://cccbdb.nist.gov