Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_2_a0, author = {E. K. Bashkirov and M. S. Mastyugin}, title = {Entanglement of two qubits interacting with one-mode quantum field}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {205--220}, publisher = {mathdoc}, volume = {19}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a0/} }
TY - JOUR AU - E. K. Bashkirov AU - M. S. Mastyugin TI - Entanglement of two qubits interacting with one-mode quantum field JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 205 EP - 220 VL - 19 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a0/ LA - ru ID - VSGTU_2015_19_2_a0 ER -
%0 Journal Article %A E. K. Bashkirov %A M. S. Mastyugin %T Entanglement of two qubits interacting with one-mode quantum field %J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences %D 2015 %P 205-220 %V 19 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a0/ %G ru %F VSGTU_2015_19_2_a0
E. K. Bashkirov; M. S. Mastyugin. Entanglement of two qubits interacting with one-mode quantum field. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 2, pp. 205-220. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_2_a0/
[1] Bashkirov E. K., Mastyugin M. S., “Entanglement of two qubits interacting with one-mode quantum field”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 79–80 (In Russian)
[2] Nielsen M. A., Chuang I. L., Quantum Computation and Quantum Information, Cambridge University Press, Cambrige, 2010, xxxii+676 pp. | DOI | MR | Zbl
[3] Schumacker D., Westmoreland M. D., Quantum Processes, Systems, and Information, Cambridge University Press, Cambrige, 2010, xii+469 pp. | DOI | MR
[4] Blatt R., Wineland D., “Entangled states of trapped atomic ions”, Nature, 453:7198 (2008), 1008–1013 | DOI
[5] You J. Q., Nori F., “Atomic physics and quantum optics using superconducting circuits”, Nature, 474:7353 (2011), 589–597, arXiv: [quant-ph] 1202.1923 | DOI
[6] Saffman M., Walker T. G., Mølmer K., “Quantum information with Rydberg atoms”, Rev. Mod. Phys., 82:3 (2010), 2313–2363, arXiv: [quant-ph] 0909.4777 | DOI
[7] Buluta I., Ashhab F., Nori F., “Natural and artificial atoms for quantum computation”, Rep. Prog. Phys., 74:10 (2011), 104401, arXiv: [quant-ph] 1002.1871 | DOI
[8] Gühne O., Tóth G., “Entanglement detection”, Physics Reports, 474:1–6 (2014), 1–75, arXiv: [quant-ph] 0811.2803 | DOI | MR
[9] Plenio M. B., Huelda S. F., Beige A. , Knight P. L., “Cavity-loss-induced generation of entangled atoms”, Phys. Rev. A, 59:3 (1999), 2468–2475 | DOI
[10] Bashkirov E. K., Stupatskaya M. P., “Entanglement of two atoms interacting with a thermal electromagnetic field”, Computer Optics, 35:2 (2011), 243–249 (In Russian)
[11] Bashkirov E. K., Mastyugin M. S., “Entanglement of two superconducting qubits interacting with two-mode thermal field”, Computer Optics, 37:3 (2013), 278–285 (In Russian)
[12] Bashkirov E. K., Mastyugin M. S., “The influence of the dipole-dipole interaction and atomic coherence on the entanglement of two atoms with degenerate two-photon transitions”, Optics and Spectroscopy, 116:4 (2014), 630–634 | DOI | DOI
[13] Bashkirov E. K., Mastyugin M. S., “The dynamics of entanglement in two-atom Tavis–Cummings model with non-degenerate two-photon transitions for four-qubits initial atom-field entangled states”, Optics Communications, 313 (2014), 170–174 | DOI
[14] Bose S., Fruentes-Guridi I., Knight P. L., Vedral V., “Subsystem purity as an enforcer of entanglement”, Phys. Rev. Lett., 87:5 (2001), 050401 | DOI | MR
[15] Kim M. S., Lee J., Ahn D., Knight P. L., “Entanglement induced by a single-mode heat environment”, Phys. Rev. A, 65:4 (2002), 040101, arXiv: quant-ph/0109052 | DOI
[16] Zhou L., Yi X. X., Song H.-S., Quo Y.-Q., “Entanglement of two atoms through different couplings and thermal noise”, J. Opt. B: Quantum Semiclass. Opt., 6:9 (2004), 378–382, arXiv: quant-ph/0308086 | DOI | MR
[17] Bashkirov E. K., “Entanglement in the system of two nonidentical atoms interacting with thermal noise”, Vestnik SamGU. Estestvenno-Nauchnaya Ser., 2006, no. 3/3(43), 21–29 (In Russian)
[18] Zhou L., Song H.-S., Li C., “Entanglement induced by a single-mode thermal field and criteria for entanglement”, J. Opt. B: Quantum Semiclass. Opt., 4:6 (2002), 425–429 | DOI
[19] Bashkirov E. K., “Entanglement induced by the two-mode thermal noise”, Laser Phys. Lett., 3:3 (2006), 145–150 | DOI
[20] Ghosh B., Majumdar A. S., Nayak N., “Effects of cavity-field statistics on atomic entanglement in the Jaynes–Cummings model”, Int. J. Quantum Inform., 05:01n02 (2007), 169–177, arXiv: quant-ph/0603039 | DOI
[21] Yan X.-Q., “Entanglement sudden death of two atoms successive passing a cavity”, Chaos, Solitons Fractals, 41:4 (2009), 1645–1650 | DOI
[22] Liao Q., Fang G., Ahmad M. A., Liu S., “Sudden birth of entanglement between two atoms successively passing a thermal cavity”, Optics Communications, 284:1 (2011), 301–305 | DOI
[23] Aguiar L. S., Munhoa P. P., Vidiella-Barranco A., Roversi J. A., “The entanglement of two dipole-dipole coupled atoms in a cavity interacting with a thermal field”, J. Opt. B: Quantum Semiclass. Opt., 7:12 (2005), S769–S771 | DOI
[24] Bashkirov E. K., Stupatskaya M. P., “Entanglement of Two Dipole-Coupled Atoms”, Fizika volnovykh protsessov i radiotekhnicheskie sistemy, 12:2 (2009), 85–89 (In Russian)
[25] Liao Xiang-Ping, Fang Mao-Fa, Cai Jian-Wu, Zheng Xiao-Juan, “The entanglement of two dipole–dipole coupled atoms interacting with a thermal field via a two-photon process”, Chinese Phys. B, 17:6 (2008), 2137–2142 | DOI
[26] Bashkirov E. K., Stupatskaya M. P., “The entanglement of two dipole-dipole coupled atoms induced by nondegenerate two-mode thermal noise”, Laser Phys., 19:3 (2009), 525–530 | DOI
[27] Marr C., Beige A., Rempe G., “Entangled-state preparation via dissipation-assisted adiabatic passages”, Phys. Rev. A, 68:3 (2003), 033817, arXiv: quant-ph/0305116 | DOI
[28] Mancini S, Bose S., “Engineering an interaction and entanglement between distant atoms”, Phys. Rev. A, 70:2 (2004), 022307, arXiv: quant-ph/0111055 | DOI
[29] Chimczak G., “Efficient generation of distant atom entanglement via cavity decay”, Phys. Rev. A, 71:5 (2005), 052305 | DOI
[30] Lu M., Xia Y., Shen L.-T., Song J., An N. B., “Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity”, Phys. Rev. A, 89:1 (2014), 012326, arXiv: [quant-ph] 1310.5323 | DOI
[31] Guo Y.-Q., Cao H.-J., Song H.-S., Field tuned atom-atom entanglement via dipole-dipole interaction, 2005, 7 pp., arXiv: quant-ph/0509142
[32] Peres A., “Separability Criterion for Density Matrices”, Phys. Rev. Lett., 77:8 (1996), 1413–1415, arXiv: quant-ph/9604005 | DOI | MR | Zbl
[33] Horodecki M., Horodecki P., Horodecki R., “Separability of mixed states: necessary and sufficient conditions”, Phys. Lett. A, 223:1–2 (1996), 1–8, arXiv: quant-ph/9605038 | DOI | MR | Zbl
[34] Hu Y.-H., Fang M.-F., Wu Q., “Atomic coherence control on the entanglement of two atoms in two-photon processes”, Chinese Phys., 16:8 (2007), 2407–2414 | DOI
[35] Hu Y.-H., Fang M.-F., “Coherence-Enhanced Entanglement Induced by a Two-Mode Thermal Field”, Commun. Theor. Phys., 54:3 (2010), 421–426 | DOI | Zbl