Voir la notice de l'article provenant de la source Math-Net.Ru
@article{VSGTU_2015_19_1_a6, author = {V. O. Soloviev}, title = {Bigravity in {Hamiltonian} formalism}, journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences}, pages = {105--116}, publisher = {mathdoc}, volume = {19}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a6/} }
TY - JOUR AU - V. O. Soloviev TI - Bigravity in Hamiltonian formalism JO - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences PY - 2015 SP - 105 EP - 116 VL - 19 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a6/ LA - ru ID - VSGTU_2015_19_1_a6 ER -
V. O. Soloviev. Bigravity in Hamiltonian formalism. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 105-116. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a6/
[1] Soloviev V. O., “Bigravity in Hamiltonian formalism”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 334–335 (In Russian)
[2] Rosen N., “General Relativity and Flat Space. I”, Phys. Rev., 57:2 (1940), 147–150 | DOI | MR
[3] Rosen N., “General Relativity and Flat Space. II”, Phys. Rev., 57:2 (1940), 150–153 | DOI | MR
[4] Rosen N., “Flat-space metric in general relativity theory”, Ann. of Phys., 22:1 (1963), 1–11 | DOI | MR | Zbl
[5] Rosen N., “A bi-metric theory of gravitation”, Gen. Rel. Grav., 4:6 (1973), 435–447 | DOI | MR | Zbl
[6] Isham C. J., Salam A., Strathdee J., “Spontaneous breakdown of conformal symmetry”, Phys. Lett. B, 31:5 (1970), 300–302 | DOI | MR
[7] Isham C. J., Salam A., Strathdee J., “$f$-Dominance of Gravity”, Phys. Rev. D, 3:4 (1971), 867–873 | DOI | MR
[8] Zumino B., “Effective Lagrangians and broken symmetries”, Lectures on Elementary Particles and Quantum Field Theory, v. 2, eds. S. Deser, M. Grisaru, H. Pedleton, MIT Press, Cambridge, MA, 1970, 437–500
[9] Damour T., Kogan I. I., “Effective Lagrangians and universality classes of nonlinear bigravity”, Phys. Rev. D, 66:10 (2002), 104024, 17 pp., arXiv: hep-th/0206042 | DOI | MR
[10] de Rham C., Gabadadze G., Tolley A. J., “Resummation of Massive Gravity”, Phys. Rev. Lett., 106:23 (2011), 231101, 4 pp., arXiv: [hep-th] 1011.1232 | DOI
[11] de Rham C., Gabadadze G., Tolley A. J., “Ghost free massive gravity in the Stückelberg language”, Phys. Lett. B, 711:2 (2012), 190–195, arXiv: [hep-th] 1107.3820 | DOI | MR
[12] Boulware D. G., Deser S., “Can Gravitation Have a Finite Range?”, Phys. Rev. D, 6:12 (1972), 3368–3382 | DOI
[13] Hassan S. F., Rosen R. A., “Bimetric gravity from ghost-free massive gravity”, J. High Energ. Phys., 2012:2, 126, arXiv: [hep-th] 1109.3515 | DOI | MR | Zbl
[14] Hassan S. F., Rosen R. A., “Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity”, J. High Energ. Phys., 2012:4 (2012), 123, arXiv: [hep-th] 1111.2070 | DOI | MR
[15] Hinterbichler K., Rosen R. A., “Interacting spin-2 fields”, J. High Energ. Phys., 2012:7 (2012), 047, arXiv: [hep-th] 1203.5783 | DOI | MR
[16] Alexandrov S., Krasnov K., Speziale S., “Chiral description of massive gravity”, J. High Energ. Phys., 2013:6 (2013), 068, arXiv: [hep-th] 1212.3614 | DOI | MR | Zbl
[17] Alexandrov S., “Canonical structure of tetrad bimetric gravity”, Gen. Rel. Grav., 46:1 (2014), 1639, arXiv: [hep-th] 1308.6586 | DOI | MR | Zbl
[18] Kluson J., “Hamiltonian formalism of bimetric gravity in vierbein formulation”, Eur. Phys. J. C, 74:8, 2985, arXiv: [hep-th] 1307.1974 | DOI
[19] Soloviev V. O., Bigravity in tetrad Hamiltonian formalism and matter couplings, 2014, 25 pp., arXiv: [hep-th] 1410.0048
[20] Soloviev V. O., Chichikina M. V., “Bigravity in the Kuchař Hamiltonian formalism: The general case”, Theoret. and Math. Phys., 176:3 (2013), 1163–1175, arXiv: [hep-th] 1211.6530 | DOI | DOI | MR | Zbl
[21] Soloviev V. O., Tchichikina M. V., “Bigravity in Kuchar's Hamiltonian formalism. 2. The special case”, Phys. Rev. D, 88:8 (2013), 084026, arXiv: [hep-th] 1302.5096 | DOI
[22] Comelli D., Crisostomi M., Nesti F., Pilo L., “Degrees of freedom in massive gravity”, Phys. Rev. D, 86:10 (2012), 101502(R), arXiv: [hep-th] 1204.1027 | DOI
[23] Comelli D., Nesti F., Pilo L., “Weak massive gravity”, Phys. Rev. D, 87:12 (2013), arXiv: [hep-th] 1302.4447 | DOI | MR
[24] Comelli D., Nesti F., Pilo L., “Massive gravity: a general analysis”, J. High Energ. Phys., 2013:7 (2013), 161, arXiv: [hep-th] 1305.0236 | DOI | MR | Zbl
[25] Arnowitt R., Deser S., Misner Ch. W., “The Dynamics of General Relativity”, Chapter 7, Gravitation: an introduction to current research, ed. L. Witten, Wiley, 1962, 227–265 ; Arnowitt R., Deser S., Misner Ch. W., “Republication of: The dynamics of general relativity”, Gen. Relativ. Gravit., 40:9, 1997–2027, arXiv: gr-qc/0405109 | MR | DOI
[26] Kuchař K., “Geometry of hyperspace. I”, J. Math. Phys., 17:5 (1976), 777–791 | DOI | MR
[27] Kuchař K., “Kinematics of tensor fields in hyperspace. II”, J. Math. Phys., 17:5 (1976), 792–800 | DOI | MR
[28] Kuchař K., “Dynamics of tensor fields in hyperspace. III”, J. Math. Phys., 17:5 (1976), 801–820 | DOI | MR
[29] Kuchař K., “Geometrodynamics with tensor sources. IV”, J. Math. Phys., 18:8 (1977), 1589–1597 | DOI | MR
[30] Fairlie D., Leznov A., “General solutions of the Monge-Ampère equation in $n$-dimensional space”, J. Geom. Phys., 16:4 (1995), 385–390, arXiv: hep-th/9403134 | DOI | MR | Zbl