Bigravity in Hamiltonian formalism
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 105-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

Theory of bigravity is one of approaches proposed to solve the dark energy problem of the Universe. It deals with two metric tensors, each one is minimally coupled to the corresponding set of matter fields. The bigravity Lagrangian equals to a sum of two General Relativity Lagrangians with the different gravitational coupling constants and different fields of matter accompanied by the ultralocal potential. As a rule, such a theory has 8 gravitational degrees of freedom: the massless graviton, the massive graviton and the ghost. A special choice of the potential, suggested by de Rham, Gabadadze and Toley (dRGT), allows to avoid of the ghost. But the dRGT potential is constructed by means of the matrix square root, and so it is not an explicit function of the metrics components. One way to do with this difficulty is to apply tetrads. Here we consider an alternative approach. The potential as a differentiable function of metrics components is supposed to exist, but we never appeal to the explicit form of this function. Only properties of this function necessary and sufficient to exclude the ghost are studied. The final results are obtained from the constraint analysis and the Poisson brackets calculations. The gravitational variables are the two induced metrics and their conjugated momenta. Also lapse and shift variables for both metrics are involved. After the exclusion of 3 auxiliary variables we stay with 4 first class constraints and 2 second class ones responsible for the ghost exclusion. The requirements for the potential are as follows: the potential should satisfy a system of the first order linear differential equations; the potential should satisfy the homogeneous Monge-Ampere equation in 4 auxiliary variables; the Hessian of the potential in 3 auxiliary variables is non-degenerate.
Keywords: gravitation theory, bimetric theories, Monge–Ampere equation, constraint Hamiltonian systems.
Mots-clés : ADM formalism
@article{VSGTU_2015_19_1_a6,
     author = {V. O. Soloviev},
     title = {Bigravity in {Hamiltonian} formalism},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {105--116},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a6/}
}
TY  - JOUR
AU  - V. O. Soloviev
TI  - Bigravity in Hamiltonian formalism
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 105
EP  - 116
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a6/
LA  - ru
ID  - VSGTU_2015_19_1_a6
ER  - 
%0 Journal Article
%A V. O. Soloviev
%T Bigravity in Hamiltonian formalism
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 105-116
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a6/
%G ru
%F VSGTU_2015_19_1_a6
V. O. Soloviev. Bigravity in Hamiltonian formalism. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 105-116. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a6/

[1] Soloviev V. O., “Bigravity in Hamiltonian formalism”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 334–335 (In Russian)

[2] Rosen N., “General Relativity and Flat Space. I”, Phys. Rev., 57:2 (1940), 147–150 | DOI | MR

[3] Rosen N., “General Relativity and Flat Space. II”, Phys. Rev., 57:2 (1940), 150–153 | DOI | MR

[4] Rosen N., “Flat-space metric in general relativity theory”, Ann. of Phys., 22:1 (1963), 1–11 | DOI | MR | Zbl

[5] Rosen N., “A bi-metric theory of gravitation”, Gen. Rel. Grav., 4:6 (1973), 435–447 | DOI | MR | Zbl

[6] Isham C. J., Salam A., Strathdee J., “Spontaneous breakdown of conformal symmetry”, Phys. Lett. B, 31:5 (1970), 300–302 | DOI | MR

[7] Isham C. J., Salam A., Strathdee J., “$f$-Dominance of Gravity”, Phys. Rev. D, 3:4 (1971), 867–873 | DOI | MR

[8] Zumino B., “Effective Lagrangians and broken symmetries”, Lectures on Elementary Particles and Quantum Field Theory, v. 2, eds. S. Deser, M. Grisaru, H. Pedleton, MIT Press, Cambridge, MA, 1970, 437–500

[9] Damour T., Kogan I. I., “Effective Lagrangians and universality classes of nonlinear bigravity”, Phys. Rev. D, 66:10 (2002), 104024, 17 pp., arXiv: hep-th/0206042 | DOI | MR

[10] de Rham C., Gabadadze G., Tolley A. J., “Resummation of Massive Gravity”, Phys. Rev. Lett., 106:23 (2011), 231101, 4 pp., arXiv: [hep-th] 1011.1232 | DOI

[11] de Rham C., Gabadadze G., Tolley A. J., “Ghost free massive gravity in the Stückelberg language”, Phys. Lett. B, 711:2 (2012), 190–195, arXiv: [hep-th] 1107.3820 | DOI | MR

[12] Boulware D. G., Deser S., “Can Gravitation Have a Finite Range?”, Phys. Rev. D, 6:12 (1972), 3368–3382 | DOI

[13] Hassan S. F., Rosen R. A., “Bimetric gravity from ghost-free massive gravity”, J. High Energ. Phys., 2012:2, 126, arXiv: [hep-th] 1109.3515 | DOI | MR | Zbl

[14] Hassan S. F., Rosen R. A., “Confirmation of the secondary constraint and absence of ghost in massive gravity and bimetric gravity”, J. High Energ. Phys., 2012:4 (2012), 123, arXiv: [hep-th] 1111.2070 | DOI | MR

[15] Hinterbichler K., Rosen R. A., “Interacting spin-2 fields”, J. High Energ. Phys., 2012:7 (2012), 047, arXiv: [hep-th] 1203.5783 | DOI | MR

[16] Alexandrov S., Krasnov K., Speziale S., “Chiral description of massive gravity”, J. High Energ. Phys., 2013:6 (2013), 068, arXiv: [hep-th] 1212.3614 | DOI | MR | Zbl

[17] Alexandrov S., “Canonical structure of tetrad bimetric gravity”, Gen. Rel. Grav., 46:1 (2014), 1639, arXiv: [hep-th] 1308.6586 | DOI | MR | Zbl

[18] Kluson J., “Hamiltonian formalism of bimetric gravity in vierbein formulation”, Eur. Phys. J. C, 74:8, 2985, arXiv: [hep-th] 1307.1974 | DOI

[19] Soloviev V. O., Bigravity in tetrad Hamiltonian formalism and matter couplings, 2014, 25 pp., arXiv: [hep-th] 1410.0048

[20] Soloviev V. O., Chichikina M. V., “Bigravity in the Kuchař Hamiltonian formalism: The general case”, Theoret. and Math. Phys., 176:3 (2013), 1163–1175, arXiv: [hep-th] 1211.6530 | DOI | DOI | MR | Zbl

[21] Soloviev V. O., Tchichikina M. V., “Bigravity in Kuchar's Hamiltonian formalism. 2. The special case”, Phys. Rev. D, 88:8 (2013), 084026, arXiv: [hep-th] 1302.5096 | DOI

[22] Comelli D., Crisostomi M., Nesti F., Pilo L., “Degrees of freedom in massive gravity”, Phys. Rev. D, 86:10 (2012), 101502(R), arXiv: [hep-th] 1204.1027 | DOI

[23] Comelli D., Nesti F., Pilo L., “Weak massive gravity”, Phys. Rev. D, 87:12 (2013), arXiv: [hep-th] 1302.4447 | DOI | MR

[24] Comelli D., Nesti F., Pilo L., “Massive gravity: a general analysis”, J. High Energ. Phys., 2013:7 (2013), 161, arXiv: [hep-th] 1305.0236 | DOI | MR | Zbl

[25] Arnowitt R., Deser S., Misner Ch. W., “The Dynamics of General Relativity”, Chapter 7, Gravitation: an introduction to current research, ed. L. Witten, Wiley, 1962, 227–265 ; Arnowitt R., Deser S., Misner Ch. W., “Republication of: The dynamics of general relativity”, Gen. Relativ. Gravit., 40:9, 1997–2027, arXiv: gr-qc/0405109 | MR | DOI

[26] Kuchař K., “Geometry of hyperspace. I”, J. Math. Phys., 17:5 (1976), 777–791 | DOI | MR

[27] Kuchař K., “Kinematics of tensor fields in hyperspace. II”, J. Math. Phys., 17:5 (1976), 792–800 | DOI | MR

[28] Kuchař K., “Dynamics of tensor fields in hyperspace. III”, J. Math. Phys., 17:5 (1976), 801–820 | DOI | MR

[29] Kuchař K., “Geometrodynamics with tensor sources. IV”, J. Math. Phys., 18:8 (1977), 1589–1597 | DOI | MR

[30] Fairlie D., Leznov A., “General solutions of the Monge-Ampère equation in $n$-dimensional space”, J. Geom. Phys., 16:4 (1995), 385–390, arXiv: hep-th/9403134 | DOI | MR | Zbl