Ultrametric diffusion in a strong centrally symmetric
Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 87-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

A random process at the boundary of a finite regularly branching tree encapsulated in the central-symmetric external field is considered with respect to introduced ultrametricity. We demonstrate an explicit procedure of reduction of dimensionality of the problem. In addition, we consider the strong-field-limit and show that in this case the problem can be solved exactly. The exact solution of the strong-field-limit problem related to the case of linearly growing hierarchy of barriers is exemplified and supplemented by estimations of the transition kinetics into the ground state.
Keywords: ultrametricity, hierarchical energy landscape.
Mots-clés : ultrametric diffusion
@article{VSGTU_2015_19_1_a5,
     author = {O. M. Sizova},
     title = {Ultrametric diffusion in a strong centrally symmetric},
     journal = {Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences},
     pages = {87--104},
     publisher = {mathdoc},
     volume = {19},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a5/}
}
TY  - JOUR
AU  - O. M. Sizova
TI  - Ultrametric diffusion in a strong centrally symmetric
JO  - Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
PY  - 2015
SP  - 87
EP  - 104
VL  - 19
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a5/
LA  - ru
ID  - VSGTU_2015_19_1_a5
ER  - 
%0 Journal Article
%A O. M. Sizova
%T Ultrametric diffusion in a strong centrally symmetric
%J Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences
%D 2015
%P 87-104
%V 19
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a5/
%G ru
%F VSGTU_2015_19_1_a5
O. M. Sizova. Ultrametric diffusion in a strong centrally symmetric. Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences, Tome 19 (2015) no. 1, pp. 87-104. http://geodesic.mathdoc.fr/item/VSGTU_2015_19_1_a5/

[1] Sizova O. M., “Ultrametric diffusion in a strong centrally symmetric field”, The 4nd International Conference “Mathematical Physics and its Applications”, Book of Abstracts and Conference Materials, eds. I. V. Volovich; V. P. Radchenko, Samara State Technical Univ., Samara, 2014, 329 (In Russian)

[2] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-Adic analysis and mathematical physics, Series on Soviet and East European Mathematics, 1, World Scientific, Singapore, 1994, xviii+319 pp. | DOI | MR | MR | Zbl | Zbl

[3] Khrennikov A. Yu., Shelkovich V. M., Sovremennyi $p$-adicheskii analiz i matematicheskaia fizika: Teoriia i prilozheniia [Modern $ p $-adic analysis and mathematical physics: Theory and Applications], Fizmatlit, Moscow, 2012, 452 pp. (In Russian)

[4] Rammal R., Toulouse G., Virasoro M. A., “Ultrametricity for phisicists”, Rev. Mod. Phys., 589:3 (1986), 765–788 | DOI | MR

[5] Mézard M., Parisi G., Virasoro M. A., Spin glass theory and beyond, World Scientific Lecture Notes in Physics, 9, World Scientific, Singapore, 1987, xiii+461 pp. | MR | Zbl

[6] Dotsenko V. S., “Physics of the spin-glass state”, Physics-Uspekhi, 36:6 (1993), 455–485 | DOI | DOI

[7] Avetisov V. A., Bikulov A. Kh., Zubarev A. P., “Ultrametric random walk and dynamics of protein molecules”, Proc. Steklov Inst. Math., 285 (2014), 3–25 | DOI | DOI | Zbl

[8] Avetisov V., Bikulov A., “Protein ultrametricity and spectral diffusion in deeply frozen proteins”, Biophys. Rev. Lett., 03:03 (2008), 387–396 | DOI

[9] Avetisov V. A., Bikulov A. Kh., Zubarev A. P., Meshkov D. A., “Multiscale mathematical modeling of molecular machines: Problems and current approaches”, Nanostruktury. Matematicheskaia fizika i modelirovanie, 6:1/2 (2011), 5–19 (In Russian)

[10] Avetisov V. A., Bikulov A. Kh., Zubarev A. P., “Mathematical Modeling of Molecular “nano-machines””, Vestn. Samar. Gos. Tekhn. Univ. Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 1(22) (2011), 9–15 (In Russian) | DOI

[11] Avetisov V. A., Ivanov V. A., Meshkov D. A., Nechaev S. K., “Fractal globule as a molecular machine”, JETP Letters, 98:4 (2013), 242–246 | DOI | DOI

[12] Avetisov V. A., Ivanov V. A., Meshkov D. A., Nechaev S. K., “Fractal globules: a new approach to artificial molecular machines”, Biophysical Journal, 107:4 (2014), 2361–2368 | DOI

[13] Mirny L. A., “The fractal globule as a model of chromatin architecture in the cell”, Chromosome Research, 19:1 (2011), 37–51 | DOI

[14] Nazarov L. I., Tamm M. V., Avetisov V. A., Nechaev S. K., “A statistical model of intra-chromosome contact maps”, Soft Matter, 11:5 (2015), 1019–1025 ; arXiv: [q-bio.GN] 1311.7689 | DOI

[15] Avetisov V. A., Zhuravlev Yu. N., “An evolutionary interpretation of the $p$-adic ultrametric diffusion equation”, Dokl. Math., 75:3 (2007), 453–455 | DOI | MR | Zbl

[16] Stillinger F. H., Weber Th. A., “Hidden structure in liquids”, Phys. Rev. A, 25:2 (1982), 978–989 | DOI

[17] Sherrington D. L., “Landscape paradigms in physics and biology: Introduction and overview”, Physica D: Nonlinear Phenomena, 107:2-4 (1997), 117–121 ; arXiv: cond-mat/9608088 | DOI | MR | Zbl

[18] Wright S., “The role of mutation, inbreeding, crossbreeding and selection in evolution”, Proceedings of the VI International Congress of Genetics, ed. D. Jones, Brooklyn Botanic Garden, Wisconsin, 1932, 356–366

[19] Hoffmann K. H., Sibani P., “Diffusion on hierarchies”, Phys. Rev. A, 38:8 (1988), 4261–4270 | DOI | MR

[20] Huberman B. A., Kerszberg M., “Ultradiffusion: the relaxation of hierarchical systems”, J. Phys. A: Math. Gen., 18:6 (1985), L331–L335 | DOI | MR

[21] Blumen A., Klafter J., Zumofen G., “Relaxation behaviour in ultrametric spaces”, J. Phys. A: Math. Gen., 19:2 (1986), L77–L84 | DOI | MR | Zbl

[22] Köhler G., Blumen A., “Subordination on ultrametric spaces”, J. Phys. A: Math. Gen., 20:16 (1987), 5627–5634 | DOI | MR

[23] Frauenfelder H., “The connection between low-temperature kinetics and life”, Protein structure: Molecular and electronic reactivity, Springer, New York, 1987, 245–261 | DOI

[24] Ansari A., Berendzen J., Bowne S. F., Frauenfelder H., Iben I. E., Sauke T. B., Shyamsunder E., Young R. D., “Protein states and proteinquakes”, Proc. Natl. Acad. Sci. USA, 82:15 (1985), 5000–5004 | DOI

[25] Ogielski A. T., Stein D. L., “Dynamics on ultrametric spaces”, Phys. Rev. Lett., 55:15 (1985), 1634–1637 | DOI | MR

[26] Avetisov V. A., Bikulov A. H., Kozyrev S. V., “Application of $p$-adic analysis to models of breaking of replica symmetry”, J. Phys. A: Math. Gen., 32:50 (1999), 8785–8791 ; arXiv: [cond-mat.dis-nn] cond-mat/9904360 | DOI | MR | Zbl

[27] Dolgopolov M. V., Zubarev A. P., “Some aspects of $m$-adic analysis and its applications to $m$-adic stochastic processes”, $p$-Adic Numbers, Ultrametric Analysis and Applications, 3:1 (2011), 39–51 ; arXiv: [math-ph] 1012.1248 | DOI | MR | Zbl

[28] Becker O. M., Karplus M., “The topology of multidimensional potential energy surfaces: Theory and application to peptide structure and kinetics”, J. Chem. Phys., 106:4 (1997), 1495–1517 | DOI

[29] Wales D. J., Miller M. A., Walsh T. R., “Archetypal energy landscapes”, Nature, 394 (1998), 758–760 | DOI

[30] Kochubei A. N., Pseudo-differential equations and stochastics over non-Archimedean fields, Pure and Applied Mathematics, 244, Marcel Dekker, New York, 2001, 336 pp. | MR | Zbl

[31] Kochubeĭ A. N., “Parabolic equations over the field of $ p$-adic numbers”, Math. USSR-Izv., 39:3 (1992), 1263–1280 | DOI | MR | Zbl

[32] Kozyrev S. V., “Dynamics on rugged landscapes of energy and ultrametric diffusion”, p-Adic Numbers, Ultrametric Analysis, and Applications, 2:2 (2010), 122–132 | DOI | MR | Zbl

[33] Grosberg A. Yu., Khokhlov A. R., Statistical Physics of Macromolecules, American Institute of Physics, New York, 1994, 350 pp. | MR